|
整数群上增长函数的次可乘性与增长率
|
Abstract:
本文给出了整数群 Z 上一个真的长度函数,并证明了这个长度函数诱导的增长函数不是次可乘的, 但却满足一个一般的次可乘不等式。同时计算出了该增长函数的增长率是欧拉数 e。
We give a proper length function on the integer group Z, and demonstrate that its induced growth function is not submultiplicative, but satis?es a general submultiplica- tive inequality. We also show that the growth rate of this growth function is Euler’s number e.
[1] | Milnor, J. (1968) A Note on Curvature and Fundamental Group. Journal of Di?erential Ge- ometry, 2, 1-7. https://doi.org/10.4310/jdg/1214501132 |
[2] | Wolf, J.A. (1968) Growth of Finitely Generated Solvable Groups and Curvature of Riemannian Manifolds. Journal of Di?erential Geometry, 2, 421-446. https://doi.org/10.4310/jdg/1214428658 |
[3] | Gromov, M. (1981) Groups of Polynomial Growth and Expanding Maps. Publications Mathé- matiques de l’Institut des Hautes études Scienti?ques, 53, 53-78. https://doi.org/10.1007/bf02698687 |
[4] | Nica, B. (2010) On the Degree of Rapid Decay. Proceedings of the American Mathematical Society, 138, 2341-2347. https://doi.org/10.1090/s0002-9939-10-10289-5 |
[5] | Ceccherini-Silberstein, T. and Coornaert, M. (2010) Cellular Automata and Groups. Springer-Verlag. https://doi.org/10.1007/978-3-642-14034-1 |
[6] | Ceccherini-Silberstein, T. and D’Adderio, M. (2021) Topics in Groups and Geometry-Growth, Amenability, and Random Walks. Springer. https://doi.org/10.1007/978-3-030-88109-2 |
[7] | de la Harpe, P. (2000) Topics in Geometric Group Theory. University of Chicago Press. [8] L?h, C. (2017) Geometric Group Theory, an Introduction. Springer. |
[8] | Mann, A. (2012) How Groups Grow. London Math. Cambridge University Press. https://doi.org/10.1017/CBO9781139095129 |
[9] | Hille, E. and Phillips, R.S. (1957) Functional Analysis and Semi-Groups. In: AMS Colloquium Publications, Vol. 31, American Mathematical Society. |