全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

DSP-Transformer:基于注意力机制的最小支配集问题求解方法
DSP-Transformer: An Approach for Solving the Minimum Dominating Set Problem Based on Attention Mechanism

DOI: 10.12677/aam.2025.144216, PP. 916-926

Keywords: 组合优化,最小支配集,Transformer,注意力机制
Combinatorial Optimization
, Minimum Dominating Set, Transformer, Attention Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

最小支配集问题在计算机科学与网络优化领域具有广泛应用,但其NP-完全性使得传统启发式方法计算成本高且难以泛化。本文提出了DSP-Transformer,一种基于Transformer结构的深度强化学习求解方法,通过编码器–解码器架构与近似策略优化方法,高效求解最小支配集问题。由于注意力机制更适合捕获图上的潜在关系,相较于传统基于消息传递机制的编码器,本方法在性能上也有显著提升。实验结果表明,该方法在T1基准数据集和ER随机图合成数据集上的表现优于传统启发式算法,能够提供更优质的解,同时显著减少计算成本。DSP-Transformer预训练后可泛化到更大规模的图实例,无需每次重新搜索,展现出深度学习在求解组合优化问题中的巨大潜力。
The Minimum Dominating Set Problem has widespread applications in computer science and network optimization. However, its NP-completeness makes traditional heuristic methods computationally expensive and difficult to generalize. In this paper, we propose DSP-Transformer, a deep reinforcement learning approach based on the Transformer architecture, which efficiently solves DSP through an encoder-decoder framework and approximate policy optimization. Since the attention mechanism is better suited for capturing latent relationships in graphs, our approach achieves significant performance improvements over traditional message-passing-based encoders. Experimental results demonstrate that DSP-Transformer outperforms conventional heuristic algorithms on both the T1 benchmark dataset and ER random graphs, providing higher-quality solutions while significantly reducing computational costs. Once pretrained, DSP-Transformer can generalize to larger graph instances without requiring repeated searches, highlighting the potential of deep learning in tackling combinatorial optimization problems.

References

[1]  Du, D.-Z. and Wan, P.-J. (2012) Connected Dominating Set: Theory and Applications. Springer Science & Business Media.
[2]  Haynes, T. W. Hedetniemi, S. and Slater, P. (2013) Fundamentals of Domination in Graphs. CRC Press.
https://doi.org/10.1201/9781482246582
[3]  Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. (2021) A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32, 4-24.
https://doi.org/10.1109/tnnls.2020.2978386
[4]  Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016) Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529, 484-489.
https://doi.org/10.1038/nature16961
[5]  Sutton, R.S. and Barto, A.G. (2018) Reinforcement Learning: An Introduction, 2nd Edition, The MIT Press.
[6]  Ore, O. (1962) Theory of Graphs. American Mathematical Society.
https://books.google.com.sg/books?id=g85UAAAAYAAJ
[7]  Bondy, J.A. and Murty, U.S.R. (2010) Graph Theory. Springer.
[8]  Haynes, T.W., Hedetniemi, S.T. and Henning, M.A. (2020) Topics in Domination in Graphs. Springer.
https://link.springer.com/book/10.1007/978-3-030-51117-3
[9]  Tarr, J. (2010) Domination in Graphs. USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/1786
[10]  Alanko, S., Crevals, S., Isopoussu, A., Östergård, P. and Pettersson, V. (2011) Computing the Domination Number of Grid Graphs. The Electronic Journal of Combinatorics, 18, 1-18.
https://doi.org/10.37236/628
[11]  Anand, R., Aggarwal, D. and Kumar, V. (2017) A Comparative Analysis of Optimization Solvers. Journal of Statistics and Management Systems, 20, 623-635.
https://doi.org/10.1080/09720510.2017.1395182
[12]  Hopfield, J.J. and Tank, D.W. (1985) “Neural” Computation of Decisions in Optimization Problems. Biological Cybernetics, 52, 141-152.
https://doi.org/10.1007/bf00339943
[13]  Bello, I., Pham, H., Le, Q.V., Norouzi, M. and Bengio, S. (2016) Neural Combinatorial Optimization with Reinforcement Learning. arXiv: 1611.09940.
https://doi.org/10.48550/arXiv.1611.09940
[14]  Vinyals, O., Fortunato, M. and Jaitly, N. (2015) Pointer Networks. Advances in Neural Information Processing Systems 28 (NIPS 2015).
https://papers.nips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
[15]  Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y. and Rousseau, L. (2018) Learning Heuristics for the TSP by Policy Gradient. Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Delft, 26-29 June 2018, 170-181.
https://doi.org/10.1007/978-3-319-93031-2_12
[16]  Chen, X. and Tian, Y. (2019) Learning to Perform Local Rewriting for Combinatorial Optimization. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, 8-14 December 2019, 6281-6292.
[17]  Chen, M., Liu, S. and He, W. (2024) Learn to Solve Dominating Set Problem with GNN and Reinforcement Learning. Applied Mathematics and Computation, 474, Article 128717.
https://doi.org/10.1016/j.amc.2024.128717
[18]  Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al. (2017) Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 6000-6010.
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[19]  Kool, W., van Hoof, H. and Welling, M. (2019) Attention, Learn to Solve Routing Problems! arXiv: 1803.08475.
https://doi.org/10.48550/arXiv.1803.08475
[20]  Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017) Proximal Policy Optimization Algorithms. arXiv: 1707.06347.
https://doi.org/10.48550/arXiv.1707.06347
[21]  Erdös, P. and Rényi, A. (2011) On the Evolution of Random Graphs. In: Newman, M., Barabási, A.-L. and Watts, D.J., Eds., The Structure and Dynamics of Networks, Princeton University Press, 38-82.
https://doi.org/10.1515/9781400841356.38
[22]  Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B. and Song, L. (2017) Learning Combinatorial Optimization Algorithms over Graphs. arXiv: 1704.01665.
https://doi.org/10.48550/ARXIV.1704.01665
[23]  Jovanovic, R., Tuba, M. and Simian, D. (2010) Ant Colony Optimization Applied to Minimum Weight Dominating Set Problem. Proceedings of the 12th WSEAS International Conference on Automatic Control, Modelling & Simulation, Catania, 29-31 May 2010, 322-326.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133