全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

溶瘤病毒-CAR-T细胞联合治疗的随机脉冲动力学模型及其平稳分布
Stochastic Impulsive Dynamical Model and Stationary Distribution of Oncolytic Virus-CAR-T Cell Combination Therapy

DOI: 10.12677/aam.2025.144214, PP. 892-904

Keywords: 溶瘤病毒疗法,CAR-T细胞免疫疗法,脉冲随机微分方程,平稳分布
Oncolytic Virotherapy
, CAR-T Cell Immunotherapy, Impulsive Stochastic Differential Equation, Stationary Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,溶瘤病毒与CAR-T细胞联合治疗在癌症免疫治疗领域展现出广阔的应用前景。本研究构建了具有脉冲输注和随机扰动的肿瘤免疫动力学模型,探讨CAR-T细胞在溶瘤病毒联合治疗中的作用机制。通过构造辅助函数,建立了系统存在唯一遍历平稳分布的条件,并推导出CAR-T细胞脉冲输注次数的约束条件。结果表明,输注频率过高可能降低疗效甚至产生负面影响,强调合理控制输注频率的重要性。该研究为优化CAR-T细胞治疗方案提供数学依据,有助于提高联合治疗的临床效果。
In recent years, the combination of oncolytic viruses (OVs) and chimeric antigen receptor T (CAR-T) cells has shown a broad application prospect in cancer immunotherapy. This study develops a tumor immunodynamic model incorporating pulse infusion and stochastic perturbations to investigate the mechanistic role of CAR-T cells in OV-based combination therapy. By constructing an auxiliary function, we establish conditions ensuring the existence of a unique ergodic stationary distribution and derive constraints on the frequency of CAR-T cell pulse infusions. The results indicate that excessively frequent infusions may diminish therapeutic efficacy or even induce adverse effects, highlighting the importance of optimizing infusion schedules. This study provides a mathematical foundation for refining CAR-T cell treatment strategies, contributing to the enhancement of clinical outcomes in combination therapy.

References

[1]  Levine, B.L., Miskin, J., Wonnacott, K. and Keir, C. (2017) Global Manufacturing of CAR T Cell Therapy. Molecular TherapyMethods & Clinical Development, 4, 92-101.
https://doi.org/10.1016/j.omtm.2016.12.006
[2]  Russell, S.J., Peng, K. and Bell, J.C. (2012) Oncolytic Virotherapy. Nature Biotechnology, 30, 658-670.
https://doi.org/10.1038/nbt.2287
[3]  Zamarin, D., Holmgaard, R.B., Subudhi, S.K., Park, J.S., Mansour, M., Palese, P., et al. (2014) Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint Blockade Immunotherapy. Science Translational Medicine, 6, 226ra32.
https://doi.org/10.1126/scitranslmed.3008095
[4]  Barish, S., Ochs, M.F., Sontag, E.D. and Gevertz, J.L. (2017) Evaluating Optimal Therapy Robustness by Virtual Expansion of a Sample Population, with a Case Study in Cancer Immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 114, E6277-E6286.
https://doi.org/10.1073/pnas.1703355114
[5]  Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.L. and Coen, D.M. (1991) Experimental Therapy of Human Glioma by Means of a Genetically Engineered Virus Mutant. Science, 252, 854-856.
https://doi.org/10.1126/science.1851332
[6]  Kochneva, G.V., Sivolobova, G.F., Tkacheva, A.V., Gorchakov, A.A. and Kulemzin, S.V. (2020) Combination of Oncolytic Virotherapy and CAR T/NK Cell Therapy for the Treatment of Cancer. Molecular Biology, 54, 1-12.
https://doi.org/10.1134/s0026893320010100
[7]  Nishio, N. and Dotti, G. (2015) Oncolytic Virus Expressing RANTES and IL-15 Enhances Function of Car-Modified T Cells in Solid Tumors. OncoImmunology, 4, e988098.
https://doi.org/10.4161/21505594.2014.988098
[8]  Park, A.K., Fong, Y., Kim, S., Yang, J., Murad, J.P., Lu, J., et al. (2020) Effective Combination Immunotherapy Using Oncolytic Viruses to Deliver CAR Targets to Solid Tumors. Science Translational Medicine, 12, eaaz1863.
https://doi.org/10.1126/scitranslmed.aaz1863
[9]  Walker, R., Navas, P.E., Friedman, S.H., Galliani, S., Karolak, A., Macfarlane, F., Noble, R., Poleszczuk, J., Russell, S., Rejniak, K.A., et al. (2016) Enhancing Synergy of CAR T Cell Therapy and Oncolytic Virus Therapy for Pancreatic Cancer. bioRxiv: 055988.
[10]  Mahasa, K.J., Ouifki, R., Eladdadi, A. and Pillis, L.D. (2022) A Combination Therapy of Oncolytic Viruses and Chimeric Antigen Receptor T Cells: A Mathematical Model Proof-of-Concept. Mathematical Biosciences and Engineering, 19, 4429-4457.
https://doi.org/10.3934/mbe.2022205
[11]  Renshaw, E. (1993) Modelling Biological Populations in Space and Time. Cambridge University Press.
[12]  Singh, A., Razooky, B., Cox, C.D., Simpson, M.L. and Weinberger, L.S. (2010) Transcriptional Bursting from the HIV-1 Promoter Is a Significant Source of Stochastic Noise in HIV-1 Gene Expression. Biophysical Journal, 98, L32-L34.
https://doi.org/10.1016/j.bpj.2010.03.001
[13]  王欣笛, 梅恒, 胡豫. 血液肿瘤嵌合抗原受体自然杀伤细胞治疗研究进展[J]. 中华血液学杂志, 2022, 43(12): 1051-1056.
[14]  Lee, D.A. (2019) Cellular Therapy: Adoptive Immunotherapy with Expanded Natural Killer Cells. Immunological Reviews, 290, 85-99.
https://doi.org/10.1111/imr.12793
[15]  胡冰. 带有溶瘤病毒治疗的随机肿瘤生长模型的动力学研究[D]: [硕士学位论文]. 长春: 东北师范大学, 2022.
[16]  Khasminskii, R. (2011) Stochastic Stability of Differential Equations, Volume 66. Springer Science & Business Media.
[17]  Higham, D.J. (2001) An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Review, 43, 525-546.
https://doi.org/10.1137/s0036144500378302

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133