全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习和不平衡数据处理的AMI-MC预测新方法
A New Method for AMI-MC Prediction Based on Machine Learning and Unbalanced Data Processing

DOI: 10.12677/aam.2025.144213, PP. 881-891

Keywords: 急性心肌梗死,机械并发症,不平衡处理,机器学习
Acute Myocardial Infarction
, Mechanical Complications, Imbalanced Treatment, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:本研究目的是寻求处理AMI-MC这类高度不平衡数据的方法以及快速准确预测模型的构建。背景:急性心梗后机械并发症是严重威胁患者生命的疾病,早识别、早处理是改善患者预后的关键。但实际工作中对于该类患者的识别往往存在滞后性,因此快速预测高危人群是亟待解决的临床问题。方法:基于山西省心血管病医院的509例急性心肌梗死患者数据,通过多种机器学习分类器,建立了预测模型,并进行了系统的模型训练和评估。此外,针对数据集中存在的不平衡问题,我们采用了先进的不平衡处理策略,以优化模型的预测性能。结果:509例AMI-MC患者数据中,仅有45例MC数据,经不平衡处理后,各算法准确率以及召回率等评价指标得分均得到了明显提升。最高准确率(0.987)、最高敏感性(0.999)、最高精确率(0.982)、最高F1分数(0.991)、最高敏感性(0.967)。并且各个模型在处理后数据上的AUROC得分较原数据而言均有明显提升(0.69521→0.96495)。LVEF是最影响机械并发症的特征,结合其他6个重要特征构建模型,在保持高召回率(1.0)的同时,准确率也达到了0.941、敏感性为0.935、F1分数为0.966。结论:本研究为提早预测急性心肌梗死的机械并发症提供了新的视角和方法,发现了LVEF在其中的关键影响,以及不平衡处理在提升模型性能中的显著作用。
Objective: The purpose of this study was to seek methods for handling highly unbalanced data such as AMI-MC and the construction of a fast and accurate prediction model. Background: Mechanical complications after acute cardiac infarction are serious life-threatening diseases, and early recognition and management are the key to improving patients’ prognosis. However, in practice, there is often a lag in the identification of such patients, so rapid prediction of high-risk groups is a clinical problem that needs to be solved urgently. Methods: Based on the data of 509 patients with acute myocardial infarction in Shanxi Provincial Cardiovascular Disease Hospital, a prediction model was established by using various machine learning classifiers and systematic model training and evaluation was performed. In addition, for the imbalance problem existing in the dataset, we adopted an advanced imbalance processing strategy to optimize the prediction performance of the model. Results: In the data of 509 AMI-MC patients, there are only 45 cases of MC data. After imbalance processing, the accuracy, recall rate, and other evaluation metrics of each algorithm were significantly improved. The highest accuracy (0.987), the highest sensitivity (0.999), the highest precision (0.982), the highest F1 score (0.991), and the highest sensitivity (0.967). Moreover, the AUROC scores of various models on the processed data have significantly improved compared to the original data (0.69521→0.96495). LVEF is the feature that most affects mechanical complications, and the model was constructed by combining the other six important features, which achieved an accuracy of 0.941, a sensitivity of 0.935, and an F1 score of 0.966, while maintaining a high recall (1.0). Conclusion: This study provides new perspectives and methods for early prediction of

References

[1]  Puerto, E., Viana-Tejedor, A., Martínez-Sellés, M., Domínguez-Pérez, L., Moreno, G., Martín-Asenjo, R., et al. (2018) Temporal Trends in Mechanical Complications of Acute Myocardial Infarction in the Elderly. Journal of the American College of Cardiology, 72, 959-966.
https://doi.org/10.1016/j.jacc.2018.06.031
[2]  Birnbaum, Y., Fishbein, M.C., Blanche, C. and Siegel, R.J. (2002) Ventricular Septal Rupture after Acute Myocardial Infarction. New England Journal of Medicine, 347, 1426-1432.
https://doi.org/10.1056/nejmra020228
[3]  Elbadawi, A., Elgendy, I.Y., Mahmoud, K., Barakat, A.F., Mentias, A., Mohamed, A.H., et al. (2019) Temporal Trends and Outcomes of Mechanical Complications in Patients with Acute Myocardial Infarction. JACC: Cardiovascular Interventions, 12, 1825-1836.
https://doi.org/10.1016/j.jcin.2019.04.039
[4]  Goldsweig, A.M., Wang, Y., Forrest, J.K., Cleman, M.W., Minges, K.E., Mangi, A.A., et al. (2018) Ventricular Septal Rupture Complicating Acute Myocardial Infarction: Incidence, Treatment, and Outcomes among Medicare Beneficiaries 1999-2014. Catheterization and Cardiovascular Interventions, 92, 1104-1115.
https://doi.org/10.1002/ccd.27576
[5]  French, J.K., Hellkamp, A.S., Armstrong, P.W., Cohen, E., Kleiman, N.S., O’Connor, C.M., et al. (2010) Mechanical Complications after Percutaneous Coronary Intervention in ST-Elevation Myocardial Infarction (from Apex-Ami). The American Journal of Cardiology, 105, 59-63.
https://doi.org/10.1016/j.amjcard.2009.08.653
[6]  Damluji, A.A., van Diepen, S., Katz, J.N., Menon, V., Tamis-Holland, J.E., Bakitas, M., et al. (2021) Mechanical Complications of Acute Myocardial Infarction: A Scientific Statement from the American Heart Association. Circulation, 144, e16-e35.
https://doi.org/10.1161/cir.0000000000000985
[7]  Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002) SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.
https://doi.org/10.1613/jair.953
[8]  Kubat, M. and Matwin, S. (1997) Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. International Conference on Machine Learning, 97, 179-186.
[9]  Peng, M., Zhang, Q., Xing, X., Gui, T., Huang, X., Jiang, Y., et al. (2019) Trainable Undersampling for Class-Imbalance Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 4707-4714.
https://doi.org/10.1609/aaai.v33i01.33014707
[10]  Ling, C.X. and Li, C. (1998) Data Mining for Direct Marketing: Problems and Solutions. KDD, 98, 73-79.
[11]  Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J. and Napolitano, A. (2010) Rusboost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans, 40, 185-197.
https://doi.org/10.1109/tsmca.2009.2029559
[12]  Batista, G.E.A.P.A., Prati, R.C. and Monard, M.C. (2004) A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter, 6, 20-29.
https://doi.org/10.1145/1007730.1007735
[13]  Wilson, D.L. (1972) Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Transactions on Systems, Man, and Cybernetics, 2, 408-421.
https://doi.org/10.1109/tsmc.1972.4309137
[14]  Manju, B.R. and Nair, A.R. (2019) Classification of Cardiac Arrhythmia of 12 Lead ECG Using Combination of SMOTEENN, XGBoost and Machine Learning Algorithms. 2019 9th International Symposium on Embedded Computing and System Design (ISED), Kollam, 13-14 December 2019, 1-7.
https://doi.org/10.1109/ised48680.2019.9096244
[15]  Freund, Y. and Schapire, R.E. (1997) A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55, 119-139.
https://doi.org/10.1006/jcss.1997.1504
[16]  Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794.
https://doi.org/10.1145/2939672.2939785
[17]  Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., et al. (2020) From Local Explanations to Global Understanding with Explainable AI for Trees. Nature Machine Intelligence, 2, 56-67.
https://doi.org/10.1038/s42256-019-0138-9
[18]  Gong, F.F., Vaitenas, I., Malaisrie, S.C. and Maganti, K. (2021) Mechanical Complications of Acute Myocardial Infarction. JAMA Cardiology, 6, 341-349.
https://doi.org/10.1001/jamacardio.2020.3690
[19]  Tang, E.W., Wong, C. and Herbison, P. (2007) Global Registry of Acute Coronary Events (GRACE) Hospital Discharge Risk Score Accurately Predicts Long-Term Mortality Post Acute Coronary Syndrome. American Heart Journal, 153, 29-35.
https://doi.org/10.1016/j.ahj.2006.10.004
[20]  Morrow, D.A., Antman, E.M., Charlesworth, A., Cairns, R., Murphy, S.A., de Lemos, J.A., et al. (2000) TIMI Risk Score for St-Elevation Myocardial Infarction: A Convenient, Bedside, Clinical Score for Risk Assessment at Presentation: An Intravenous nPA for Treatment of Infarcting Myocardium Early II Trial Substudy. Circulation, 102, 2031-2037.
https://doi.org/10.1161/01.cir.102.17.2031
[21]  Curtis, J.P., Sokol, S.I., Wang, Y., Rathore, S.S., Ko, D.T., Jadbabaie, F., et al. (2003) The Association of Left Ventricular Ejection Fraction, Mortality, and Cause of Death in Stable Outpatients with Heart Failure. Journal of the American College of Cardiology, 42, 736-742.
https://doi.org/10.1016/s0735-1097(03)00789-7
[22]  Maeder, M.T. and Kaye, D.M. (2009) Heart Failure with Normal Left Ventricular Ejection Fraction. Journal of the American College of Cardiology, 53, 905-918.
https://doi.org/10.1016/j.jacc.2008.12.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133