|
基于心主血脉和血管新生理论探讨血管性痴呆针刺干预机制
|
Abstract:
血管性痴呆(VaD)的发生以血管疾病为基础,以慢性进行性认知能力下降为特征,是临床上常见导致痴呆病的主要病因之一。本文基于心主血脉和血管新生理论,将血管性痴呆的病机归纳为“心血不足、淤血阻络、脑窍失养,诱发痴呆”。在治疗上,针刺作为一种传统中医疗法,近年来被发现可改善和延缓VaD的发病进展,但对于针刺作用机制的阐述仍不够详尽。因此,基于心主血脉和血管新生理论指导下,本文试将针刺疗法与血管性痴呆加以联系,阐述针刺干预血管性痴呆的作用机制,以期为针刺治疗VaD提供新思路。
The occurrence of vascular dementia (VaD) is based on vascular disease and characterized by chronic progressive cognitive decline. It is one of the main causes of dementia in clinical practice. Based on the theory that the heart governs blood vessels and angiogenesis, this paper summarizes the pathogenesis of vascular dementia as “insufficient blood, congestion of collaterals, and loss of nourishment of brain orifices, inducing dementia”. In terms of treatment, acupuncture, as a traditional Chinese medicine treatment, has been found in recent years to improve and delay the progression of VaD. However, the explanation of the mechanism of acupuncture is still not detailed enough. Therefore, guided by the theory that the heart governs blood vessels and angiogenesis, this paper attempts to connect acupuncture therapy with vascular dementia and expounds the mechanism of acupuncture intervention in vascular dementia, in order to provide new ideas for acupuncture treatment of VaD.
[1] | Jia, L., Quan, M., Fu, Y., Zhao, T., Li, Y., Wei, C., et al. (2020) Dementia in China: Epidemiology, Clinical Management, and Research Advances. The Lancet Neurology, 19, 81-92. https://doi.org/10.1016/s1474-4422(19)30290-x |
[2] | Morgan, A.E. and Mc Auley, M.T. (2024) Vascular Dementia: From Pathobiology to Emerging Perspectives. Ageing Research Reviews, 96, Article 102278. https://doi.org/10.1016/j.arr.2024.102278 |
[3] | Pathan, N., Kharod, M.K., Nawab, S., Di Scipio, M., Paré, G. and Chong, M. (2024) Genetic Determinants of Vascular Dementia. Canadian Journal of Cardiology, 40, 1412-1423. https://doi.org/10.1016/j.cjca.2024.03.025 |
[4] | Chang Wong, E. and Chang Chui, H. (2022) Vascular Cognitive Impairment and Dementia. CONTINUUM: Lifelong Learning in Neurology, 28, 750-780. https://doi.org/10.1212/con.0000000000001124 |
[5] | Wang, Z., Zhang, Z., Liu, J., Guo, M. and Li, H. (2023) Panax Ginseng in the Treatment of Alzheimer’s Disease and Vascular Dementia. Journal of Ginseng Research, 47, 506-514. https://doi.org/10.1016/j.jgr.2023.03.001 |
[6] | Zagórska, A., Bucki, A., Partyka, A., Jastrzębska-Więsek, M., Siwek, A., Głuch-Lutwin, M., et al. (2022) Design, Synthesis, and Behavioral Evaluation of Dual-Acting Compounds as Phosphodiesterase Type 10A (PDE10A) Inhibitors and Serotonin Ligands Targeting Neuropsychiatric Symptoms in Dementia. European Journal of Medicinal Chemistry, 233, Article 114218. https://doi.org/10.1016/j.ejmech.2022.114218 |
[7] | 中国痴呆与认知障碍指南写作组, 中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(一): 痴呆及其分类诊断标准[J]. 中华医学杂志, 2018, 98(13): 965-970. |
[8] | 李灵芝, 王维峰, 胡瑞锋, 李丽, 韩世芳, 杨晶. 益智开窍针刺法联合益智汤治疗血管性痴呆的疗效观察[J]. 上海针灸杂志, 2023, 42(12): 1247-1252. |
[9] | 徐敏杰, 常静玲. 论“脑心同治”理论对脑卒中康复的指导作用[J]. 北京中医药大学学报, 2022, 45(10): 1066-1070. |
[10] | 高丽君, 王继红, 高一城. 血会膈俞之理论探微[J]. 中国中医基础医学杂志, 2021, 27(12): 1925-1928. |
[11] | 周婷, 王婧吉, 舒琳睿, 等. 电针井穴对VD大鼠海马CA1区PI3K/Akt/mTOR通路及VEGF、bFGF的影响[J]. 时珍国医国药, 2022, 33(4): 1015-1018. |
[12] | 石荣菊. 电针相关井穴干预血管性痴呆大鼠海马CA1区PI3K/Akt/mTOR信号通路的研究[D]: [硕士学位论文]. 合肥: 安徽中医药大学, 2021. |
[13] | Culig, L., Chu, X. and Bohr, V.A. (2022) Neurogenesis in Aging and Age-Related Neurodegenerative Diseases. Ageing Research Reviews, 78, Article 101636. https://doi.org/10.1016/j.arr.2022.101636 |
[14] | 毕珂瑶, 李赫妍, 苏景超, 等. 电针调控PI3K/AKT/mTOR通路改善血管性痴呆大鼠海马神经元炎性和氧化损伤机制[J]. 上海针灸杂志, 2024, 43(3): 326-334. |
[15] | 李龙春, 李晓晔, 杜小华. 针刺通过调控PI3K/Akt/mTOR通路改善血管性痴呆大鼠认知功能的机制研究[J]. 针刺研究, 2021, 46(10): 851-856. |
[16] | Kretschmer, M., Rüdiger, D. and Zahler, S. (2021) Mechanical Aspects of Angiogenesis. Cancers, 13, Article 4987. https://doi.org/10.3390/cancers13194987 |
[17] | Deng, M., Huang, L., Zhong, X. and Huang, M. (2020) Dynamic Changes of Beclin-1 in the Hippocampus of Male Mice with Vascular Dementia at Different Time Points. Journal of Molecular Neuroscience, 70, 1611-1618. https://doi.org/10.1007/s12031-020-01591-y |
[18] | 代泽阳. 基于心主血脉理论研究针灸治疗对择期PCI患者围手术期心肌损伤的临床观察[D]: [硕士学位论文]. 成都: 成都中医药大学, 2019. |
[19] | Ahn, S.M., Kim, H.N., Kim, Y.R., Choi, Y.W., Kim, C.M., Shin, H.K., et al. (2016) Emodin from Polygonum Multiflorum Ameliorates Oxidative Toxicity in HT22 Cells and Deficits in Photothrombotic Ischemia. Journal of Ethnopharmacology, 188, 13-20. https://doi.org/10.1016/j.jep.2016.04.058 |
[20] | Rundek, T., Tolea, M., Ariko, T., Fagerli, E.A. and Camargo, C.J. (2022) Vascular Cognitive Impairment (VCI). Neurotherapeutics, 19, 68-88. https://doi.org/10.1007/s13311-021-01170-y |
[21] | Sakuma, R., Kawahara, M., Nakano-Doi, A., Takahashi, A., Tanaka, Y., Narita, A., et al. (2016) Brain Pericytes Serve as Microglia-Generating Multipotent Vascular Stem Cells Following Ischemic Stroke. Journal of Neuroinflammation, 13, Article No. 57. https://doi.org/10.1186/s12974-016-0523-9 |
[22] | Wei, B., Wang, Z., Wu, S., Orgah, J., Zhu, J. and Song, W. (2021) Improving Collateral Circulation: A Potential Adjunctive Strategy to Prevent or Slow the Progression of Vascular Dementia. Neuropsychiatric Disease and Treatment, 17, 3061-3067. https://doi.org/10.2147/ndt.s328446 |
[23] | Troidl, K., Schubert, C., Vlacil, A., Chennupati, R., Koch, S., Schütt, J., et al. (2020) The Lipopeptide MALP-2 Promotes Collateral Growth. Cells, 9, Article 997. https://doi.org/10.3390/cells9040997 |
[24] | Wei, Z., Wang, Y., Zhao, W. and Schachner, M. (2017) Electro-Acupuncture Modulates L1 Adhesion Molecule Expression after Mouse Spinal Cord Injury. The American Journal of Chinese Medicine, 45, 37-52. https://doi.org/10.1142/s0192415x17500045 |
[25] | Mori, T., Asano, T. and Town, T. (2010) Targeting S100B in Cerebral Ischemia and in Alzheimer’s Disease. Cardiovascular Psychiatry and Neurology, 2010, Article ID: 687067. https://doi.org/10.1155/2010/687067 |
[26] | Liu, Q., Yang, Y. and Fan, X. (2020) Microvascular Pericytes in Brain-Associated Vascular Disease. Biomedicine & Pharmacotherapy, 121, Article 109633. https://doi.org/10.1016/j.biopha.2019.109633 |
[27] | Terpolilli, N.A., Kim, S., Thal, S.C., Kataoka, H., Zeisig, V., Nitzsche, B., et al. (2012) Inhalation of Nitric Oxide Prevents Ischemic Brain Damage in Experimental Stroke by Selective Dilatation of Collateral Arterioles. Circulation Research, 110, 727-738. https://doi.org/10.1161/circresaha.111.253419 |
[28] | Ibrahim, A.M., Pottoo, F.H., Dahiya, E.S., Khan, F.A. and Kumar, J.B.S. (2020) Neuron‐Glia Interactions: Molecular Basis of Alzheimer’s Disease and Applications of Neuroproteomics. European Journal of Neuroscience, 52, 2931-2943. https://doi.org/10.1111/ejn.14838 |
[29] | Yang, Y.H., Cheng, J., Rao, T., Jiang, Y.J., Chen, J.C. and Yang, S.L. (2022) Visualization of Research in Treatment of Vascular Dementia by CiteSpace. China Journal of Chinese Materia Medica, 47, 6235-6248. |
[30] | Xiong, W., Bai, X., Xiao, H., et al. (2020) Effects of Astragaloside Ⅳ on Exosome Secretion and Its microRNA-126 Expression in Human Endothelial Progenitor Cells. Chinese Journal of Burns, 36, 1183-1190. |
[31] | Fu, S., He, S., Xu, B., Hu, C., Lu, S., Shen, W., et al. (2014) Acupuncture Promotes Angiogenesis after Myocardial Ischemia through H3K9 Acetylation Regulation at VEGF Gene. PLOS ONE, 9, e94604. https://doi.org/10.1371/journal.pone.0094604 |
[32] | Wu, Y., Hu, R., Zhong, X., Zhang, A., Pang, B., Sun, X., et al. (2021) Electric Acupuncture Treatment Promotes Angiogenesis in Rats with Middle Cerebral Artery Occlusion through EphB4/EphrinB2 Mediated Src/PI3K Signal Pathway. Journal of Stroke and Cerebrovascular Diseases, 30, Article 105165. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105165 |
[33] | Peng, Y., Xu, S., Ni, S. and Zeng, C. (2022) Electro-Acupuncture Promotes Angiogenesis via Exosomal miR-210 in the Hypoxia-Induced HUVECs Mediated HIF-1α/VEGF/Notch 1 Signal Pathway. Current Neurovascular Research, 19, 406-417. https://doi.org/10.2174/1567202620666221024143408 |
[34] | Wang, P., Tang, J.Y. and Yang, J. (2012) Effects of Moxibustion on the Expressions of Hippocampal VEGF, FLT-1, bFGF, and bFGF-r in Vascular Dementia Rats. Chinese Journal of Integrated Traditional and Western Medicine, 32, 97-101. |
[35] | Gao, Y.L., Tian, H.M., Chen, C.T., et al. (2020) Effect of Acupuncture Technique of Tiaoxin Tongdu on Learning-Memory Ability and Expressions of Hippocampal VEGF and Ang-1 in Rats with Vascular Dementia. Chinese Acupuncture & Moxibustion, 40, 1108-1112. |
[36] | Kan, Y., Zhang, X.N. and Jing, X.H. (2019) Research Progress of Acupuncture and the Related Adjuvant Therapy for Promoting Pressure Ulcer Healing in Recent 10 Years. Chinese Acupuncture & Moxibustion, 39, 680-684. |
[37] | 李小杏, 焦冰, 方桦, 等. 基于血清生物标志物的卒中后痴呆发生风险评估模型研究[J]. 广东医学, 2023, 44(12): 1548-1553. |
[38] | 张晶. 针刺“百会、印堂、水沟”穴改善卒中后认知障碍的作用及机制研究[D]: [硕士学位论文]. 武汉: 江汉大学, 2023. |
[39] | 李珺媛. 基于HIF-1α/Notch1信号通路探讨复方中药塞络通治疗血管性痴呆的神经修复机制[D]: [硕士学位论文]. 北京: 中国中医科学院, 2023. |
[40] | 邹莉芳. 血管性痴呆的miR-9、miR-124变化及中风气血汤对其影响[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2023. |