全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中医药基于铁死亡相关的信号通路治疗帕金森病研究进展
Research Progress in the Treatment of Parkinson’s Disease Based on Ferroptosis-Related Signaling Pathways in Traditional Chinese Medicine

DOI: 10.12677/tcm.2025.144265, PP. 1787-1793

Keywords: 帕金森,铁死亡,通路,综述
Parkinson
, Ferroptosis, Access, Review

Full-Text   Cite this paper   Add to My Lib

Abstract:

PD是一种神经退行性病变疾病,发病率随年龄增长而上升,全球人口老龄化加剧,帕金森病患者数量也在增加。PD主要的病理变化是多巴胺能神经元的损伤和路易体的堆积,近年来,铁死亡作为非凋亡性细胞死亡方式,被发现与PD病理发展密切相关。PD是中医中的颤证,其基本病机为肝风内动,筋脉失养,中医药也越来越多应用于PD的治疗,研究发现中药通过调控铁死亡通路治疗PD具有可观的效果,这可能与抗氧化应激、保护神经元免受损伤有关。中医药可能通过调节Nrf2因子相关通路、p53/SLC7A11通路、ACLS4/GPX4通路和调节NCOA4介导的铁自噬来抑制铁死亡治疗PD。
PD is a neurodegenerative disease with an increasing incidence of disease, and the number of patients with Parkinson’s disease is increasing as the global population ages. The main pathological changes of PD are the damage of dopaminergic neurons and the accumulation of Lewy bodies, and in recent years, ferroptosis, as a non-apoptotic cell death mode, has been found to be closely related to the pathological development of PD. PD is a fibrillation syndrome in traditional Chinese medicine, and its basic pathogenesis is liver wind internal movement, tendon and vein dystrophy, and traditional Chinese medicine is also increasingly used in the treatment of PD, and studies have found that traditional Chinese medicine has considerable effects in the treatment of PD by regulating the ferroptosis pathway, which may be related to antioxidative stress and protection of neurons from damage. TCM may inhibit ferroptosis in the treatment of PD by modulating the Nrf2 factor-related pathway, p53/SLC7A11 pathway, ACLS4/GPX4 pathway, and regulating NCOA4-mediated iron autophagy.

References

[1]  Xu, D.-C., Chen, Y., Xu, Y., ShenTu, C.-Y. and Peng, L.-H. (2023) Signaling Pathways in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Interventions. Signal Transduction and Targeted Therapy, 8, Article No. 73.
https://doi.org/10.1038/s41392-023-01353-3
[2]  Dorsey, E.R., Constantinescu, R., Thompson, J.P., Biglan, K.M., Holloway, R.G., Kieburtz, K., et al. (2007) Projected Number of People with Parkinson Disease in the Most Populous Nations, 2005 through 2030. Neurology, 68, 384-386.
https://doi.org/10.1212/01.wnl.0000247740.47667.03
[3]  Li, G., Ma, J., Cui, S., He, Y., Xiao, Q., Liu, J., et al. (2019) Parkinson’s Disease in China: A Forty-Year Growing Track of Bedside Work. Translational Neurodegeneration, 8, Article No. 22.
https://doi.org/10.1186/s40035-019-0162-z
[4]  庞文渊, 翟利杰, 刘依琳, 等. 全球帕金森病综合治疗指南的分析[J]. 中国临床药理学杂志, 2022, 38(21): 2638-2643.
[5]  徐栋, 袁永娥, 黄世敬. 培元通滞法治疗帕金森病临床经验[J]. 亚太传统医药, 2022, 18(5): 100-103.
[6]  张永超, 黄世敬, 王永炎. “虚气留滞”与帕金森病病机探讨[J]. 北京中医药大学学报, 2013, 36(12): 805-807, 820.
[7]  吴大龙, 赵婧彤, 罗丹, 等. 国医大师任继学从伏邪理论论治帕金森病[J]. 中华中医药杂志, 2019, 34(8): 3526-3528.
[8]  邱朝阳, 霍青. 从毒损脉络论治帕金森病[J]. 四川中医, 2019, 37(10): 18-21.
[9]  Simon, D.K., Tanner, C.M. and Brundin, P. (2020) Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clinics in Geriatric Medicine, 36, 1-12.
https://doi.org/10.1016/j.cger.2019.08.002
[10]  Galper, J., Dean, N.J., Pickford, R., Lewis, S.J.G., Halliday, G.M., Kim, W.S., et al. (2022) Lipid Pathway Dysfunction Is Prevalent in Patients with Parkinson’s Disease. Brain, 145, 3472-3487.
https://doi.org/10.1093/brain/awac176
[11]  Kovac, S., Angelova, P.R., Holmström, K.M., Zhang, Y., Dinkova-Kostova, A.T. and Abramov, A.Y. (2015) Nrf2 Regulates ROS Production by Mitochondria and NADPH Oxidase. Biochimica et Biophysica Acta (BBA)-General Subjects, 1850, 794-801.
https://doi.org/10.1016/j.bbagen.2014.11.021
[12]  Biosa, A., Arduini, I., Soriano, M.E., Giorgio, V., Bernardi, P., Bisaglia, M., et al. (2018) Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson’s Disease. ACS Chemical Neuroscience, 9, 2849-2858.
https://doi.org/10.1021/acschemneuro.8b00276
[13]  Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[14]  Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2
[15]  Chen, X., Li, J., Kang, R., Klionsky, D.J. and Tang, D. (2020) Ferroptosis: Machinery and Regulation. Autophagy, 17, 2054-2081.
https://doi.org/10.1080/15548627.2020.1810918
[16]  Borsche, M., Pereira, S.L., Klein, C. and Grünewald, A. (2021) Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. Journal of Parkinson’s Disease, 11, 45-60.
https://doi.org/10.3233/jpd-201981
[17]  梅胜兰, 夏中元, 孟庆涛, 等. 细胞铁死亡发生机制的研究进展[J]. 医学综述, 2020, 26(21): 4207-4211, 4218.
[18]  Pichler, I., Del Greco M., F., Gögele, M., Lill, C.M., Bertram, L., Do, C.B., et al. (2013) Serum Iron Levels and the Risk of Parkinson Disease: A Mendelian Randomization Study. PLOS Medicine, 10, e1001462.
https://doi.org/10.1371/journal.pmed.1001462
[19]  Shukla, D., Goel, A., Mandal, P.K., Joon, S., Punjabi, K., Arora, Y., et al. (2023) Glutathione Depletion and Concomitant Elevation of Susceptibility in Patients with Parkinson’s Disease: State-of-the-Art MR Spectroscopy and Neuropsychological Study. ACS Chemical Neuroscience, 14, 4383-4394.
https://doi.org/10.1021/acschemneuro.3c00717
[20]  Costa, I., Barbosa, D.J., Benfeito, S., Silva, V., Chavarria, D., Borges, F., et al. (2023) Molecular Mechanisms of Ferroptosis and Their Involvement in Brain Diseases. Pharmacology & Therapeutics, 244, Article 108373.
https://doi.org/10.1016/j.pharmthera.2023.108373
[21]  Dodson, M., de la Vega, M.R., Cholanians, A.B., Schmidlin, C.J., Chapman, E. and Zhang, D.D. (2019) Modulating NRF2 in Disease: Timing Is Everything. Annual Review of Pharmacology and Toxicology, 59, 555-575.
https://doi.org/10.1146/annurev-pharmtox-010818-021856
[22]  Abdalkader, M., Lampinen, R., Kanninen, K.M., Malm, T.M. and Liddell, J.R. (2018) Targeting Nrf2 to Suppress Ferroptosis and Mitochondrial Dysfunction in Neurodegeneration. Frontiers in Neuroscience, 12, Article 466.
https://doi.org/10.3389/fnins.2018.00466
[23]  陆瑶, 鲁婷婷, 郑克迪, 等. 芍药苷对MPP+/MPTP诱导的帕金森病模型小鼠的保护作用[J]. 中国兽医学报, 2024, 44(1): 121-127.
[24]  Wang, L., An, H., Yu, F., Yang, J., Ding, H., Bao, Y., et al. (2022) The Neuroprotective Effects of Paeoniflorin against MPP+-Induced Damage to Dopaminergic Neurons via the Akt/Nrf2/GPX4 Pathway. Journal of Chemical Neuroanatomy, 122, Article 102103.
https://doi.org/10.1016/j.jchemneu.2022.102103
[25]  Lin, Z., Liu, Y., Xue, N., Zheng, R., Yan, Y., Wang, Z., et al. (2022) Quercetin Protects against MPP+/MPTP-Induced Dopaminergic Neuron Death in Parkinson’s Disease by Inhibiting Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 7769355.
https://doi.org/10.1155/2022/7769355
[26]  Jiang, Y., Xie, G., Alimujiang, A., Xie, H., Yang, W., Yin, F., et al. (2023) Protective Effects of Querectin against MPP+-Induced Dopaminergic Neurons Injury via the Nrf2 Signaling Pathway. Frontiers in Bioscience-Landmark, 28, Article 42.
https://doi.org/10.31083/j.fbl2803042
[27]  Hong, X., Deng, Q., Zhao, C., Zhang, Y. and Wu, G. (2024) Hispolon Inhibits Neuronal Ferroptosis by Promoting the Expression of Nrf-2. NeuroReport, 35, 242-249.
https://doi.org/10.1097/wnr.0000000000001996
[28]  Han, Z., Wang, B., Wen, Y., Li, Y., Feng, C., Ding, X., et al. (2024) Acteoside Alleviates Lipid Peroxidation by Enhancing Nrf2-Mediated Mitophagy to Inhibit Ferroptosis for Neuroprotection in Parkinson’s Disease. Free Radical Biology and Medicine, 223, 493-505.
https://doi.org/10.1016/j.freeradbiomed.2024.07.018
[29]  Wang, H., Wu, S., Jiang, X., Li, W., Li, Q., Sun, H., et al. (2025) Acteoside Alleviates Salsolinol-Induced Parkinson’s Disease by Inhibiting Ferroptosis via Activating Nrf2/SLC7A11/GPX4 Pathway. Experimental Neurology, 385, Article 115084.
https://doi.org/10.1016/j.expneurol.2024.115084
[30]  Xiong, P., Chen, X., Guo, C., et al. (2012) Baicalin and Deferoxamine Alleviate Iron Accumulation in Different Brain Regions of Parkinson’s Disease Rats. Neural Regeneration Research, 7, 2092-2098.
[31]  孙平鸽, 李坤彬, 李娜, 等. 基于Nrf2-Notch1信号轴探讨黄芩苷对帕金森病大鼠黑质多巴胺能神经元氧化应激的影响[J]. 浙江中医药大学学报, 2021, 45(8): 876-882.
[32]  王晓娜, 许丽娜. 芒果苷改善过氧化氢诱导帕金森细胞模型的氧化应激损伤[J]. 神经损伤与功能重建, 2020, 15(8): 439-442, 482.
[33]  孙冰, 徐玉英. 氧化苦参碱对帕金森小鼠中枢神经系统氧化应激的影响[J]. 新乡医学院学报, 2020, 37(6): 509-516.
[34]  Li, M., Zhang, J., Jiang, L., Wang, W., Feng, X., Liu, M., et al. (2023) Neuroprotective Effects of Morroniside from Cornus officinalis Sieb. Et zucc against Parkinson’s Disease via Inhibiting Oxidative Stress and Ferroptosis. BMC Complementary Medicine and Therapies, 23, Article No. 218.
https://doi.org/10.1186/s12906-023-03967-0
[35]  潘涛, 肖琪, 樊慧杰, 等. 五子衍宗丸对帕金森病小鼠神经元运动功能的作用及其可能的机制[J]. 解放军医学杂志, 2024, 49(5): 550-556.
[36]  Rochette, L., Dogon, G., Rigal, E., Zeller, M., Cottin, Y. and Vergely, C. (2022) Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences, 24, Article 449.
https://doi.org/10.3390/ijms24010449
[37]  李晨, 王鹏, 王亮, 等. 补肾活血颗粒对亚急性帕金森病模型小鼠脑黑质多巴胺神经元铁死亡的影响[J]. 中医杂志, 2022, 63(15): 1463-1469.
[38]  谌盈帆, 郝斐然, 汤响林, 等. 基于核受体辅激活因子4介导的铁自噬探讨补肾活血颗粒对帕金森病模型小鼠脑黑质神经元铁死亡的影响[J]. 中华中医药杂志, 2024, 39(2): 926-931.
[39]  Lee, J., Kim, W.K., Bae, K., Lee, S.C. and Lee, E. (2021) Lipid Metabolism and Ferroptosis. Biology, 10, Article 184.
https://doi.org/10.3390/biology10030184
[40]  郭宇婷. 天麻钩藤饮调控ACSL4介导的脂质过氧化抑制细胞铁死亡延缓PD进程的初步研究[D]: [硕士学位论文]. 合肥: 安徽中医药大学, 2022.
[41]  Xu, R., Wang, W. and Zhang, W. (2023) Ferroptosis and the Bidirectional Regulatory Factor p53. Cell Death Discovery, 9, Article No. 197.
https://doi.org/10.1038/s41420-023-01517-8
[42]  谌盈帆, 栾振先, 齐小荣, 等. 基于p53/SLC7A11轴探讨补肾活血颗粒含药血清对MPP+诱导的PC12细胞铁死亡的影响[J]. 中华中医药杂志, 2024, 39(4): 1735-1741.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133