全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

山东省能源消费碳排放时空格局研究
Research on the Spatiotemporal Pattern of Carbon Emissions from Energy Consumption in Shandong Province

DOI: 10.12677/ag.2025.154057, PP. 577-585

Keywords: 夜间灯光,能源消费,碳排放,山东
Night Lights
, Energy Consumption, Carbon Emissions, Shandong

Full-Text   Cite this paper   Add to My Lib

Abstract:

能源消耗和碳排放增加,加剧气候变化,准确估算碳排放和了解碳排放空间分布,是节能减排的基础。传统的碳排放估算仅通过统计数据计算省或区域碳排放量,由于统计数据的缺失,无法估算小空间尺度的碳排放。为了更好地了解市级碳排空间分布,文章利用NPP-VIIRS夜间灯光数据,采用时空地理加权回归模型,建立夜间灯光与能源消费碳排放的关系模型,得到山东省市级能源消费碳排放空间分布图。结果表明:GTWR模型估算,能源消费碳排放具有较高的精度,能够展现山东省碳排放的空间分布特征。总体空间上,山东省碳排放呈增长趋势,主要分布在北部、南部、东部;碳排放热点主要分布在东部的日照、潍坊、青岛、烟台;分布重心在潍坊。研究结果可为山东省减排政策提供支撑。
The increase in energy consumption and carbon emissions has aggravated climate change. Accurately estimating carbon emissions and understanding the spatial distribution of carbon emissions are the basis for energy conservation and emission reduction. Traditional carbon emission estimation only calculates provincial or regional carbon emissions through statistical data. Due to the lack of statistical data, it is impossible to estimate carbon emissions at a small spatial scale. In order to better understand the spatial distribution of carbon emissions at the municipal level, this paper uses NPP-VIIRS night light data and a spatiotemporal geographic weighted regression model to establish a relationship model between night light and energy consumption carbon emissions, and obtains a spatial distribution map of energy consumption carbon emissions at the municipal level in Shandong Province. The results show that the GTWR model estimates energy consumption carbon emissions with high accuracy and can show the spatial distribution characteristics of carbon emissions in Shandong Province. In terms of overall space, carbon emissions in Shandong Province are on the rise, mainly distributed in the north, south and east; carbon emission hotspots are mainly distributed in Rizhao, Weifang, Qingdao and Yantai in the east; the distribution center is in Weifang. The research results can provide support for Shandong Province’s emission reduction policies.

References

[1]  李春丽, 唐宏, 张志丹, 等. 基于不同土地利用的吉林省碳排放时空格局分析[J]. 水土保持学报, 2016, 30(1): 250-254+284.
[2]  刘占成, 王安建, 于汶加, 等. 中国区域碳排放研究[J]. 地球学报, 2010, 31(5): 727-732.
[3]  齐玉春, 董云社. 中国能源领域温室气体排放现状及减排对策研究 [J]. 地理科学, 2004, 24(5): 528-534.
[4]  杜海波, 魏伟, 张学渊, 等. 黄河流域能源消费碳排放时空格局演变及影响因素——基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J]. 地理研究, 2021, 40(7): 2051-2065.
[5]  刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34(2): 248-258.
[6]  郑继承. 城乡居民生活能源消费碳排放测算研究——以贵州省为例[J]. 生态经济, 2017, 33(6): 14-18.
[7]  高倩. 基于DMSP/OLS 夜间灯光数据的天山北坡城市群人口分布空间模拟[J]. 西北人口, 2017, 38(3): 113-120.
[8]  潘竟虎, 李俊峰. 基于夜间灯光影像的中国电力消耗量估算及时空动态[J]. 地理研究, 2016, 35(4): 627-638.
[9]  余柏蒗, 王丛笑, 宫文康, 等. 夜间灯光遥感与城市问题研究: 数据, 方法, 应用和展望[J]. 遥感学报, 2021, 25(1): 342-364.
[10]  苏泳娴, 陈修治, 叶玉瑶, 等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013, 68(11): 1513-1526.
[11]  牛亚文, 赵先超, 胡艺觉. 基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J]. 环境科学学报, 2021, 41(9): 3847-3856.
[12]  蓝皓新, 徐军. 浙江省县域碳排放时空格局及影响因素研究[J]. 地理空间信息, 2024, 22(10): 5-8+112.
[13]  杨琳绮, 赵锐锋, 康丽芳, 等. 甘肃省碳排放时空演变及其影响因素的多尺度[J/OL]. 环境科学, 2024, 1-18.
https://doi.org/10.13227/j.hjkx.202406275, 2025-04-24.
[14]  陈怡, 凌莉, 古圳威, 等. 陕西省碳排放时空格局演变及其影响因素[J]. 中国环境科学, 2024, 44(4): 1826-1839.
[15]  韩聪, 张立新, 岳美亭. 基于GWR模型的京津冀县域碳排放强度时空演变及影响因素分析[J]. 湖南工业大学学报, 2023, 37(5): 68-77.
[16]  Chen, H., Zhang, X., Wu, R. and Cai, T. (2020) Revisiting the Environmental Kuznets Curve for City-Level CO2 Emissions: Based on Corrected NPP-VIIRS Nighttime Light Data in China. Journal of Cleaner Production, 268, Article 121575.
https://doi.org/10.1016/j.jclepro.2020.121575

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133