全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于强化学习的多智能体系统一致性跟踪控制算法
Reinforcement Learning-Based Consensus Tracking Control Algorithm for Multi-Agent Systems

DOI: 10.12677/csa.2025.154110, PP. 374-381

Keywords: 强化学习,非线性多智能体系统,跟踪控制,动态线性化
Reinforcement Learning
, Nonlinear Multi-Agent System, Tracking Control, Dynamic Linearization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种新颖的基于强化学习的无模型自适应控制算法,适用于具有未知动态的离散时间非线性多智能体系统。采用等效动态线性化算法来设计最优控制器。针对Q学习策略和演员–评论家(actor-critic)神经网络进行了重构,以促进一致性控制。所提出的强化学习方法能够仅基于输入–输出数据实时动态调整线性化参数。通过数值仿真验证了该方法的有效性。
This paper presents a novel reinforcement learning-based model-free adaptive control algorithm for discrete-time nonlinear multi-agent systems with unknown dynamics. The equivalent dynamic linearization algorithm is employed to design an optimal controller. The Q-Learning strategy and actor-critic neural network are restructured to facilitate consensus control. The proposed reinforcement learning approach dynamically adjusts linearization parameters in real-time using only input-output data. Numerical simulations validate the method’s effectiveness.

References

[1]  Schilling, M., Melnik, A., Ohl, F.W., Ritter, H.J. and Hammer, B. (2021) Decentralized Control and Local Information for Robust and Adaptive Decentralized Deep Reinforcement Learning. Neural Networks, 144, 699-725.
https://doi.org/10.1016/j.neunet.2021.09.017
[2]  Wang, N., Gao, Y. and Zhang, X. (2021) Data-Driven Performance-Prescribed Reinforcement Learning Control of an Unmanned Surface Vehicle. IEEE Transactions on Neural Networks and Learning Systems, 32, 5456-5467.
https://doi.org/10.1109/tnnls.2021.3056444
[3]  Zhang, Y., Chu, B. and Shu, Z. (2019) A Preliminary Study on the Relationship between Iterative Learning Control and Reinforcement Learning. IFAC-PapersOnLine, 52, 314-319.
https://doi.org/10.1016/j.ifacol.2019.12.669
[4]  Yue, B., Su, M., Jin, X. and Che, W. (2022) Event-Triggered MFAC of Nonlinear NCSs against Sensor Faults and Dos Attacks. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 4409-4413.
https://doi.org/10.1109/tcsii.2022.3178881
[5]  Liao, Y., Jiang, Q., Du, T. and Jiang, W. (2020) Redefined Output Model-Free Adaptive Control Method and Unmanned Surface Vehicle Heading Control. IEEE Journal of Oceanic Engineering, 45, 714-723.
https://doi.org/10.1109/joe.2019.2896397
[6]  Wang, X., Karimi, H.R., Shen, M., Liu, D., Li, L. and Shi, J. (2022) Neural Network-Based Event-Triggered Data-Driven Control of Disturbed Nonlinear Systems with Quantized Input. Neural Networks, 156, 152-159.
https://doi.org/10.1016/j.neunet.2022.09.021
[7]  Dorri, A., Kanhere, S.S. and Jurdak, R. (2018) Multi-Agent Systems: A Survey. IEEE Access, 6, 28573-28593.
https://doi.org/10.1109/access.2018.2831228
[8]  Chen, F. and Ren, W. (2019) On the Control of Multi-Agent Systems: A Survey. Foundations and Trends® in Systems and Control, 6, 339-499.
https://doi.org/10.1561/2600000019
[9]  Olfati-Saber, R., Fax, J.A. and Murray, R.M. (2007) Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95, 215-233.
https://doi.org/10.1109/jproc.2006.887293
[10]  Amirkhani, A. and Barshooi, A.H. (2021) Consensus in Multi-Agent Systems: A Review. Artificial Intelligence Review, 55, 3897-3935.
https://doi.org/10.1007/s10462-021-10097-x
[11]  Zhao, W., Chen, G., Xie, X., Xia, J. and Park, J.H. (2023) Sampled-Data Exponential Consensus of Multi-Agent Systems with Lipschitz Nonlinearities. Neural Networks, 167, 763-774.
https://doi.org/10.1016/j.neunet.2023.09.003
[12]  Ren, H., Liu, R., Cheng, Z., Ma, H. and Li, H. (2024) Data-Driven Event-Triggered Control for Nonlinear Multi-Agent Systems with Uniform Quantization. IEEE Transactions on Circuits and Systems II: Express Briefs, 71, 712-716.
https://doi.org/10.1109/tcsii.2023.3305946
[13]  Ma, H., Li, H., Lu, R. and Huang, T. (2020) Adaptive Event-Triggered Control for a Class of Nonlinear Systems with Periodic Disturbances. Science China Information Sciences, 63, Article ID: 150212.
https://doi.org/10.1007/s11432-019-2680-1
[14]  Zhu, Y. and Hou, Z. (2014) Data-Driven MFAC for a Class of Discrete-Time Nonlinear Systems with RBFNN. IEEE Transactions on Neural Networks and Learning Systems, 25, 1013-1020.
https://doi.org/10.1109/tnnls.2013.2291792
[15]  Hou, Z., Chi, R. and Gao, H. (2017) An Overview of Dynamic-Linearization-Based Data-Driven Control and Applications. IEEE Transactions on Industrial Electronics, 64, 4076-4090.
https://doi.org/10.1109/tie.2016.2636126

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133