全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半C-可约共形双扭曲积芬斯勒度量
Semi-C-Reducible Conformally Doubly Warped Product Finsler Metric

DOI: 10.12677/PM.2025.154136, PP. 330-337

Keywords: 芬斯勒度量,共形双扭曲积,半C-可约芬斯勒度量,类C2芬斯勒度量
Finsler Meric
, Conformally Doubly Warped Product, Semi-C-Reducible Finsler Metric, C2-Like Finsler Metric

Full-Text   Cite this paper   Add to My Lib

Abstract:

设F1和F2分别是光滑流形M1和M2上的芬斯勒度量,共形双扭曲积芬斯勒度量是在乘积流形M=M1×M2上赋予的芬斯勒度量 F 2 = e 2 ( f 2 2 F 2 1 + f 2 1 F 2 2 ) , ù , 其中f1、f2和$\sigma$分别是M1 、M2和M上的正值光滑函数。本文证明了半C-可约共形双扭曲积芬斯勒度量是类C2芬斯勒度量。
Let F1 and F2 be two Finsler metrics on smooth manifold M1 and M2,respectively.The conformally doubly warped product Finsler metric F 2 = e 2 ( f 2 2 F 2 1 + f 2 1 F 2 2 ) , ù is a Finsler metric endowed on the M=M1×M2 ,where f1、f2 and $\sigma$ are positive smooth functions onM1 、M2 and M, respectively.It is proved that semi-C-reducible conformally doubly warped product Finsler metric is a C2.

References

[1]  Matsumoto, M. (1974) On Finsler Spaces with Randers' Metric and Special Forms of Important Tensors. Kyoto Journal of Mathematics, 14, 477-498. https://doi.org/10.1215/kjm/1250523171
[2]  Matsumoto, M. and Shibata, C. (1979) On Semi-C-Reducibility, T-Tensor = 0 and S4-Likeness of Finsler Spaces. Kyoto Journal of Mathematics, 19, 301-31. https://doi.org/10.1215/kjm/1250522434
[3]  Matsumoto, M. (1980) On Semi C-Reducible Finsler Spaces with Constant Coe cients and C2-Like Finsler Spaces. Tensor, NS, 34, 218-222.
[4]  Chethana, C. and Narasimhamurthy, S.K. (2015) On Semi Reducible Finsler Metrics. Journal on Science Engineering and Technology, 2, 261-264.
[5]  Dwivedi, P.K. (2011) P-Reducible Finsler Spaces and Applications. International Journal of Mathematical Analysis, 5, 223-229.
[6]  Matsumoto, M. (1992) Theory of Finsler Spaces with ( , )-Metric. Reports on Mathematical Physics, 31, 43-83.
https://doi.org/10.1016/0034-4877(92)90005-l
[7]  Bishop, R.L. and O'Neill, B. (1969) Manifolds of Negative Curvature. Transactions of the American Mathematical Society, 145, 1-49.
https://doi.org/10.1090/s0002-9947-1969-0251664-4
[8]  Asanov, G.S. (1992) Finslerian Extension of Schwarzschild Metric. Fortschritte der Physik/Progress of Physics, 40, 667-693.
https://doi.org/10.1002/prop.2190400705
[9]  Peyghan, E. and Tayebi, A. (2012) On Doubly Warped Product Finsler Manifolds. Nonlinear Analysis: Real World Applications, 13, 1703-1720.
https://doi.org/10.1016/j.nonrwa.2011.12.002
[10]  Soleiman, A. and Abdelsalam, A.M. (2019) On Conformally Doubly Warped Product Finsler Manifold. Journal of the Egyptian Mathematical Society, 27, 1-13.
https://doi.org/10.1186/s42787-019-0059-0
[11]  Bao, D., Chern, S.S. and Shen, Z.M. (2000) An Introduction to Riemann-Finsler Geometry. Springer Science.
[12]  Shen, Z.M. (2001) Di erential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133