|
Pure Mathematics 2025
半C-可约共形双扭曲积芬斯勒度量
|
Abstract:
设F1和F2分别是光滑流形M1和M2上的芬斯勒度量,共形双扭曲积芬斯勒度量是在乘积流形M=M1×M2上赋予的芬斯勒度量, 其中f1、f2和$\sigma$分别是M1 、M2和M上的正值光滑函数。本文证明了半C-可约共形双扭曲积芬斯勒度量是类C2芬斯勒度量。
Let F1 and F2 be two Finsler metrics on smooth manifold M1 and M2,respectively.The conformally doubly warped product Finsler metric is a Finsler metric endowed on the M=M1×M2 ,where f1、f2 and $\sigma$ are positive smooth functions onM1 、M2 and M, respectively.It is proved that semi-C-reducible conformally doubly warped product Finsler metric is a C2.
[1] | Matsumoto, M. (1974) On Finsler Spaces with Randers' Metric and Special Forms of Important
Tensors. Kyoto Journal of Mathematics, 14, 477-498.
https://doi.org/10.1215/kjm/1250523171 |
[2] | Matsumoto, M. and Shibata, C. (1979) On Semi-C-Reducibility, T-Tensor = 0 and S4-Likeness
of Finsler Spaces. Kyoto Journal of Mathematics, 19, 301-31.
https://doi.org/10.1215/kjm/1250522434 |
[3] | Matsumoto, M. (1980) On Semi C-Reducible Finsler Spaces with Constant Coe cients and
C2-Like Finsler Spaces. Tensor, NS, 34, 218-222. |
[4] | Chethana, C. and Narasimhamurthy, S.K. (2015) On Semi Reducible Finsler Metrics. Journal
on Science Engineering and Technology, 2, 261-264. |
[5] | Dwivedi, P.K. (2011) P-Reducible Finsler Spaces and Applications. International Journal of
Mathematical Analysis, 5, 223-229. |
[6] | Matsumoto, M. (1992) Theory of Finsler Spaces with ( , )-Metric. Reports on Mathematical
Physics, 31, 43-83. https://doi.org/10.1016/0034-4877(92)90005-l |
[7] | Bishop, R.L. and O'Neill, B. (1969) Manifolds of Negative Curvature. Transactions of the
American Mathematical Society, 145, 1-49.
https://doi.org/10.1090/s0002-9947-1969-0251664-4 |
[8] | Asanov, G.S. (1992) Finslerian Extension of Schwarzschild Metric. Fortschritte der
Physik/Progress of Physics, 40, 667-693. https://doi.org/10.1002/prop.2190400705 |
[9] | Peyghan, E. and Tayebi, A. (2012) On Doubly Warped Product Finsler Manifolds. Nonlinear
Analysis: Real World Applications, 13, 1703-1720.
https://doi.org/10.1016/j.nonrwa.2011.12.002 |
[10] | Soleiman, A. and Abdelsalam, A.M. (2019) On Conformally Doubly Warped Product Finsler
Manifold. Journal of the Egyptian Mathematical Society, 27, 1-13.
https://doi.org/10.1186/s42787-019-0059-0 |
[11] | Bao, D., Chern, S.S. and Shen, Z.M. (2000) An Introduction to Riemann-Finsler Geometry.
Springer Science. |
[12] | Shen, Z.M. (2001) Di erential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers. |