全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ISM-BN的海底隧道工程进度风险评估研究
A Study on Schedule Risk Assessment of Subsea Tunnel Engineering Based on ISM-BN

DOI: 10.12677/mm.2025.154114, PP. 300-316

Keywords: 海底隧道工程,进度风险管理,风险评估,贝叶斯网络,解释结构模型
Subsea Tunnel Engineering
, Schedule Risk Management, Risk Assessment, Bayesian Network (BN), Interpretive Structural Model (ISM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

海底隧道工程作为跨海交通体系的重要组成部分,其建设过程面临地质复杂、环境敏感、技术高难等多重挑战,进度风险管理存在显著特殊性。本文以某大型海底隧道工程为研究对象,聚焦进度风险分析的理论与方法创新,基于解释结构模型和贝叶斯网络模型,构建“风险识别–层级解析–因果推理”的全链条研究框架,旨在解决如何系统识别独特性进度风险因素、量化风险因素的相互作用关系与层级结构以及追溯关键风险致因链并提出精准防控策略的问题。
As a critical component of cross-sea transportation systems, subsea tunnel engineering faces multifaceted challenges during construction, including geological complexity, environmental sensitivity, and technical sophistication, resulting in unique characteristics in schedule risk management. This study focuses on a large-scale subsea tunnel engineering, aiming to advance theoretical and methodological innovations in schedule risk analysis. By integrating the Interpretive Structural Model (ISM) and Bayesian Network (BN), a comprehensive research framework encompassing “risk identification, hierarchical analysis, and causal inference” is developed. The objectives are to systematically identify unique schedule risk factors, quantify their interactions and hierarchical relationships, and trace critical causal chains to propose targeted risk mitigation strategies.

References

[1]  《中国公路学报》编辑部. 中国交通隧道工程学术研究综述2022 [J]. 中国公路学报, 2022, 35(4): 1-40.
[2]  肖明清, 孙文昊, 曲立清, 等. 胶州湾第二海底隧道总体设计方案研究[J]. 隧道建设(中英文), 2023, 43(2): 199-216.
[3]  Zhang, D. (2023) An Overview of Subsea Tunnel Construction. In: Key Technologies for Safety Construction of Mined Subsea Tunnels, Springer, 1-48.
https://doi.org/10.1007/978-981-19-8753-3_1
[4]  Niu, F., Cai, Y., Liao, H., Li, J., Tang, K., Wang, Q., et al. (2022) Unfavorable Geology and Mitigation Measures for Water Inrush Hazard during Subsea Tunnel Construction: A Global Review. Water, 14, Article 1592.
https://doi.org/10.3390/w14101592
[5]  Liu, J.Y. (2012) Schedule Uncertainty Control: A Literature Review. Physics Procedia, 33, 1842-1848.
https://doi.org/10.1016/j.phpro.2012.05.293
[6]  Phan, T.D., Smart, J.C.R., Capon, S.J., Hadwen, W.L. and Sahin, O. (2016) Applications of Bayesian Belief Networks in Water Resource Management: A Systematic Review. Environmental Modelling & Software, 85, 98-111.
https://doi.org/10.1016/j.envsoft.2016.08.006
[7]  Leu, S. and Chang, C. (2015) Bayesian-Network-Based Fall Risk Evaluation of Steel Construction Projects by Fault Tree Transformation. Journal of Civil Engineering and Management, 21, 334-342.
https://doi.org/10.3846/13923730.2014.890643
[8]  Einstein, H.H. and Vicky, S.G. (1974) Geological Model for Tunnel Cost Model. Proceedings of the Rapid Excavation and Tunneling Conference, San Francisco, 24-27 June 1974.
[9]  Einstein, H.H. (1996) Risk and Risk Analysis in Rock Engineering. Tunnelling and Underground Space Technology, 11, 141-155.
https://doi.org/10.1016/0886-7798(96)00014-4
[10]  丁士昭. 建设工程项目管理[M]. 北京: 中国建筑工业出版社, 2004.
[11]  Moret, Y. and Einstein, H.H. (2016) Construction Cost and Duration Uncertainty Model: Application to High-Speed Rail Line Project. Journal of Construction Engineering and Management, 142, Article 05016010.
https://doi.org/10.1061/(asce)co.1943-7862.0001161
[12]  Hyun, K., Min, S., Choi, H., Park, J. and Lee, I. (2015) Risk Analysis Using Fault-Tree Analysis (FTA) and Analytic Hierarchy Process (AHP) Applicable to Shield TBM Tunnels. Tunnelling and Underground Space Technology, 49, 121-129.
https://doi.org/10.1016/j.tust.2015.04.007
[13]  De Marco, A. and Narbaev, T. (2021) Factors of Schedule and Cost Performance of Tunnel Construction Megaprojects. The Open Civil Engineering Journal, 15, 38-49.
https://doi.org/10.2174/1874149502115010038
[14]  王鹏. 基于类比分析法的复杂艰险高原山区铁路施工组织工期指标关键参数研究[J]. 铁道建筑, 2021, 61(9): 155-160.
[15]  Abioye, S.O., Oyedele, L.O., Akanbi, L., Ajayi, A., Davila Delgado, J.M., Bilal, M., et al. (2021) Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. Journal of Building Engineering, 44, Article 103299.
https://doi.org/10.1016/j.jobe.2021.103299
[16]  黄锦庭, 肖仲华, 张立茂. 基于BIM和NSGA-Ⅲ的超高层建筑施工进度多目标优化研究[J]. 工程管理学报, 2024, 38(5): 111-117.
[17]  Mahmoodzadeh, A., Nejati, H.R. and Mohammadi, M. (2022) Optimized Machine Learning Modelling for Predicting the Construction Cost and Duration of Tunnelling Projects. Automation in Construction, 139, Article 104305.
https://doi.org/10.1016/j.autcon.2022.104305
[18]  Pan, Y. and Zhang, L. (2021) Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Automation in Construction, 122, Article 103517.
https://doi.org/10.1016/j.autcon.2020.103517
[19]  Liu, D., Dai, Q., Tang, X., Zhang, R., Lu, T. and Chen, J. (2025) An Improved Random Forest-Based Operation Duration Prediction of Long-Distance Tunnel Construction Considering Geological Uncertainty. Journal of Computing in Civil Engineering, 39, Article 04024060.
https://doi.org/10.1061/jccee5.cpeng-6041
[20]  Zhang, W., Tang, X., Yang, W., Jiang, J., Zhang, H. and Li, P. (2024) Review of Tunnels and Tunnelling under Unfavourable Geological Conditions. Geological Journal, 59, 2668-2689.
https://doi.org/10.1002/gj.4937
[21]  刘世伟, 盛谦, 朱泽奇, 等. 隧道围岩内地下水渗流边界效应影响研究[J]. 岩土力学, 2018, 39(11): 4001-4009.
[22]  Wang, H.N., Wu, L., Jiang, M.J. and Song, F. (2018) Analytical Stress and Displacement Due to Twin Tunneling in an Elastic Semi‐Infinite Ground Subjected to Surcharge Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 42, 809-828.
https://doi.org/10.1002/nag.2764
[23]  牛景轶, 金祖权. 海底隧道工程对海洋环境的污染方式、特点及防治[J]. 青岛农业大学学报(社会科学版), 2009, 21(4): 50-55.
[24]  江崇旭, 那艳玲. 超长跨海隧道环境保障技术难题及对策[J]. 铁道建筑技术, 2022(12): 135-138.
[25]  Sun, Z., Zhang, D. and Fang, Q. (2023) Technologies for Large Cross-Section Subsea Tunnel Construction Using Drilling and Blasting Method. Tunnelling and Underground Space Technology, 141, Article 105161.
https://doi.org/10.1016/j.tust.2023.105161
[26]  Wang, Y.F. (2023) Study on Engineering Geological Comprehensive Survey Technology of Jintang Subsea Tunnel. Railway Standard Design, 67, 30-36.
[27]  王梦恕. 厦门海底隧道设计、施工、运营安全风险分析[J]. 施工技术, 2005(S1): 7-10.
[28]  Dammyr, P., Nilsen, B. and Gollegger, J. (2017) Feasibility of Tunnel Boring through Weakness Zones in Deep Norwegian Subsea Tunnels. Tunnelling and Underground Space Technology, 69, 133-146.
https://doi.org/10.1016/j.tust.2017.06.012
[29]  谭光宗. 大断面海底隧道建设的安全风险评估与控制对策[D]: [博士学位论文]. 北京: 北京交通大学, 2014.
[30]  Chung, H., Lee, I., Jung, J. and Park, J. (2019) Bayesian Networks-Based Shield TBM Risk Management System: Methodology Development and Application. KSCE Journal of Civil Engineering, 23, 452-465.
https://doi.org/10.1007/s12205-018-0912-y
[31]  李一勇, 宁进进, 董辉, 等. 外海沉管隧道项目工期策划研究[J]. 中国港湾建设, 2024, 44(5): 22-26+39.
[32]  王焰. 沿海复合地层泥水盾构施工适应性分析[J]. 铁道建筑, 2019, 59(7): 65-68+92.
[33]  Hon, C.K.H., Sun, C., Xia, B., Jimmieson, N.L., Way, K.A. and Wu, P.P. (2021) Applications of Bayesian Approaches in Construction Management Research: A Systematic Review. Engineering, Construction and Architectural Management, 29, 2153-2182.
https://doi.org/10.1108/ecam-10-2020-0817
[34]  周圆媛, 何一韬, 赵璟璐, 等. 基于贝叶斯网络的岩溶区盾构隧道施工安全性分析[J]. 现代隧道技术, 2018, 55(S2): 764-771.
[35]  肖琪聃, 赵珍妮, 刘林超. 基于贝叶斯网络的地铁项目施工风险管理研究[J]. 信阳师范学院学报(自然科学版), 2021, 34(1): 138-144.
[36]  Koseoglu Balta, G.C., Dikmen, I. and Birgonul, M.T. (2021) Bayesian Network Based Decision Support for Predicting and Mitigating Delay Risk in TBM Tunnel Projects. Automation in Construction, 129, Article 103819.
https://doi.org/10.1016/j.autcon.2021.103819
[37]  Ou, X., Wu, Y., Wu, B., Jiang, J. and Qiu, W. (2022) Dynamic Bayesian Network for Predicting Tunnel-Collapse Risk in the Case of Incomplete Data. Journal of Performance of Constructed Facilities, 36, Article 04022034.
https://doi.org/10.1061/(asce)cf.1943-5509.0001745
[38]  Xue, Y., Li, Z., Li, S., Qiu, D., Su, M., Xu, Z., et al. (2018) Water Inrush Risk Assessment for an Undersea Tunnel Crossing a Fault: An Analytical Model. Marine Georesources & Geotechnology, 37, 816-827.
https://doi.org/10.1080/1064119x.2018.1494230
[39]  Wang, Z., Liu, Z. and Liu, J. (2020) Risk Identification and Responses of Tunnel Construction Management during the COVID-19 Pandemic. Advances in Civil Engineering, 2020, Article 6620539.
https://doi.org/10.1155/2020/6620539
[40]  Mauretta, S., Purba, H. and Purba, A. (2020) Risk Identification in Tunnel Construction Project: A Literature Review. Facta Universitatis-Series: Architecture and Civil Engineering, 18, 261-286.
https://doi.org/10.2298/fuace200704019m
[41]  Forcael, E., Morales, H., Agdas, D., Rodríguez, C. and León, C. (2018) Risk Identification in the Chilean Tunneling Industry. Engineering Management Journal, 30, 203-215.
https://doi.org/10.1080/10429247.2018.1484266
[42]  杨东辉. 青岛市A海底隧道海上地质勘探施工项目风险管理研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2021.
[43]  何建辉. 钻爆法与掘进机法在引沁入汾工程中的应用比较[J]. 水利建设与管理, 2019, 39(4): 61-66+84.
[44]  Konyukhov, D.S. (2022) Analysis of Mechanized Tunneling Parameters to Determine the Overcutting Characteristics. Mining Science and Technology (Russia), 7, 49-56.
https://doi.org/10.17073/2500-0632-2022-1-49-56
[45]  李政道, 陈哲, 张丽梅, 等. 基于模糊综合评价理论的装配式建筑施工进度风险管理[J]. 建筑施工, 2020, 42(11): 2193-2196.
[46]  赵泽斌, 满庆鹏. 基于前景理论的重大基础设施工程风险管理行为演化博弈分析[J]. 系统管理学报, 2018, 27(1): 109-117.
[47]  黄建文, 杨青青, 黄琴, 等. 基于多因素影响下缓冲区设置的进度风险预警[J]. 土木工程与管理学报, 2017, 34(1): 33-37+43.
[48]  李小雪. 城市地下大空间施工安全风险耦合演变机理及应用研究[D]: [博士学位论文]. 北京: 北京交通大学, 2023.
[49]  Andiyan, A., Putra, R.M., Rembulan, G.D. and Tannady, H. (2021) Construction Project Evaluation Using CPM-Crashing, CPM-PERT and CCPM for Minimize Project Delays. Journal of Physics: Conference Series, 1933, Article 012096.
https://doi.org/10.1088/1742-6596/1933/1/012096
[50]  Shelake, A.G., Gogate, N.G. and Rajhans, N.R. (2022) An Integrated Approach for Identification and Prioritization of Risk Factors in Tunnel Construction. Materials Today: Proceedings, 65, 1805-1812.
https://doi.org/10.1016/j.matpr.2022.04.855
[51]  申建红, 尹琪, 张宇馨, 等. 基于ISM-BN的国际铁路工程工期风险预警[J]. 沈阳大学学报(自然科学版), 2022, 34(5): 389-397.
[52]  田水承, 郭谦, 张江江, 等. 基于蒙特卡罗法的建筑工人不安全行为风险评估[J]. 西安科技大学学报, 2023, 43(2): 373-379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133