全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GPIGINAR(1)模型的贝叶斯估计
Bayesian Estimation of the GPIGINAR(1) Model

DOI: 10.12677/sa.2025.144117, PP. 369-382

Keywords: GPIGINAR(1)模型,贝叶斯估计,MCMC算法
GPIGINAR(1) Model
, Bayesian Estimation, MCMC Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前研究表明,整数值时间序列通常呈现出重尾特征。然而,能够处理这类具有重尾特征数据的模型相对较少。本文聚焦于广义泊松逆高斯INAR(1) (GPIGINAR(1))模型,该模型能够拟合重尾特征。文中采用自适应马尔可夫链蒙特卡洛(MCMC)算法,对该模型中所关注的参数进行贝叶斯估计,并将其结果与极大似然估计结果进行对比,以此证明所提方法的有效性。最后,通过具体实例进一步说明该模型在处理此类数据时的有效性,以及该算法在解决这类问题时的可行性。
Current research shows that integer-valued time series usually exhibit heavy-tailed characteristics. However, relatively few models are capable of handling data with such heavy-tailed characteristics. This paper focuses on the Generalized Poisson Inverse Gaussian INAR(1) (GPIGINAR(1)) model, which is able to fit heavy-tailed features. In this paper, the Adaptive Markov Chain Monte Carlo (MCMC) algorithm is adopted to perform Bayesian estimation on the parameters of interest in this model. The results are then compared with those of maximum likelihood estimation to prove the effectiveness of the proposed method. Finally, specific examples are used to further illustrate the effectiveness of this model in processing such data and the feasibility of the algorithm in solving such problems.

References

[1]  Maiti, R., Biswas, A. and Chakraborty, B. (2017) Modelling of Low Count Heavy Tailed Time Series Data Consisting Large Number of Zeros and Ones. Statistical Methods & Applications, 27, 407-435.
https://doi.org/10.1007/s10260-017-0413-z
[2]  Holla, M.S. (1967) On a Poisson-Inverse Gaussian Distribution. Metrika, 11, 115-121.
https://doi.org/10.1007/bf02613581
[3]  Sichel, H.S. (1982) Repeat-Buying and the Generalized Inverse Gaussian-Poisson Distribution. Applied Statistics, 31, 193-204.
https://doi.org/10.2307/2347993
[4]  Tweedie, M.C., et al. (1984) An Index Which Distinguishes between Some Important Exponential Families. In: Statistics: Applications and New Directions: Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, Indian Statistical Institute, 579-604.
[5]  Shoukri, M.M., Asyali, M.H., VanDorp, R. and Kelton, D. (2021) The Poisson Inverse Gaussian Regression Model in the Analysis of Clustered Counts Data. Journal of Data Science, 2, 17-32.
https://doi.org/10.6339/jds.2004.02(1).135
[6]  Bourguignon, M., Rodrigues, J. and Santos-Neto, M. (2018) Extended Poisson INAR(1) Processes with Equidispersion, Under-Dispersion and Overdispersion. Journal of Applied Statistics, 46, 101-118.
https://doi.org/10.1080/02664763.2018.1458216
[7]  钱连勇. 若干重尾整数值时间序列模型的研究[D]: [博士学位论文]. 长春: 吉林大学, 2021.
[8]  Bolstad, W.M. (2007) Introduction to Bayesian Statistics. Wiley.
https://doi.org/10.1002/9780470181188
[9]  Hay, J.L. (2001) Bayesian Analysis of a Time Series of Counts with Covariates: An Application to the Control of an Infectious Disease. Biostatistics, 2, 433-444.
https://doi.org/10.1093/biostatistics/2.4.433
[10]  Chen, C.W.S. and Lee, J.C. (1995) Bayesian Inference of Threshold Autoregressive Models. Journal of Time Series Analysis, 16, 483-492.
https://doi.org/10.1111/j.1467-9892.1995.tb00248.x
[11]  Chen, C.W.S. and So, M.K.P. (2006) On a Threshold Heteroscedastic Model. International Journal of Forecasting, 22, 73-89.
https://doi.org/10.1016/j.ijforecast.2005.08.001
[12]  Chen, C.W.S., Khamthong, K. and Lee, S. (2019) Markov Switching Integer-Valued Generalized Auto-Regressive Conditional Heteroscedastic Models for Dengue Counts. Journal of the Royal Statistical Society Series C: Applied Statistics, 68, 963-983.
https://doi.org/10.1111/rssc.12344
[13]  Ausín, M.C. and Galeano, P. (2007) Bayesian Estimation of the Gaussian Mixture GARCH Model. Computational Statistics & Data Analysis, 51, 2636-2652.
https://doi.org/10.1016/j.csda.2006.01.006
[14]  Bu, R. and McCabe, B. (2008) Model Selection, Estimation and Forecasting in Inar(p) Models: A Likelihood-Based Markov Chain Approach. International Journal of Forecasting, 24, 151-162.
https://doi.org/10.1016/j.ijforecast.2007.11.002
[15]  朱复康, 李琦. INGARCH(1,1)模型参数的矩估计和Bayes估计[J]. 吉林大学学报(理学版), 2009, 47(5): 899-902.
[16]  Neal, P. and Subba Rao, T. (2007) MCMC for Integer-Valued ARMA Processes. Journal of Time Series Analysis, 28, 92-110.
https://doi.org/10.1111/j.1467-9892.2006.00500.x
[17]  张哲, 张海祥, 张卓飞, 等. INAR(1)模型参数的Bayes估计[J]. 吉林大学学报(理学版), 2010, 48(6): 931-935.
[18]  Drovandi, C.C., Pettitt, A.N. and McCutchan, R.A. (2016) Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods. Bayesian Analysis, 11, 325-352.
https://doi.org/10.1214/15-ba950
[19]  Truong, B., Chen, C.W. and Sriboonchitta, S. (2017) Hysteretic Poisson INGARCH Model for Integer-Valued Time Series. Statistical Modelling, 17, 401-422.
https://doi.org/10.1177/1471082x17703855
[20]  Chen, C.W.S. and Lee, S. (2016) Bayesian Causality Test for Integer-Valued Time Series Models with Applications to Climate and Crime Data. Journal of the Royal Statistical Society Series C: Applied Statistics, 66, 797-814.
https://doi.org/10.1111/rssc.12200
[21]  Chu, Y. and Yu, K. (2023) Bayesian Log-Linear Beta-Negative Binomial Integer-Valued Garch Model. Computational Statistics, 39, 1183-1202.
https://doi.org/10.1007/s00180-023-01386-w
[22]  王佩. 门限ARMA模型的贝叶斯估计[D]: [硕士学位论文]. 北京: 中国矿业大学, 2019.
[23]  Li, H., Yang, K. and Wang, D. (2018) A Threshold Stochastic Volatility Model with Explanatory Variables. Statistica Neerlandica, 73, 118-138.
https://doi.org/10.1111/stan.12143
[24]  Garay, A.M., Medina, F.L., Cabral, C.R.B. and Lin, T. (2020) Bayesian Analysis of the p-Order Integer-Valued AR Process with Zero-Inflated Poisson Innovations. Journal of Statistical Computation and Simulation, 90, 1943-1964.
https://doi.org/10.1080/00949655.2020.1754819
[25]  黄菊. 空间自回归条件异方差模型的贝叶斯估计[D]: [硕士学位论文]. 长春: 吉林大学, 2021.
[26]  Yang, K., Yu, X., Zhang, Q. and Dong, X. (2022) On MCMC Sampling in Self-Exciting Integer-Valued Threshold Time Series Models. Computational Statistics & Data Analysis, 169, Article 107410.
https://doi.org/10.1016/j.csda.2021.107410
[27]  于鑫洋. 自激励整数值门限自回归模型的贝叶斯估计及应用[D]: [硕士学位论文]. 长春: 长春工业大学, 2022.
[28]  Kang, Y., Lu, F. and Wang, S. (2023) Bayesian Analysis for an Improved Mixture Binomial Autoregressive Model with Applications to Rainy-Days and Air Quality Level Data. Stochastic Environmental Research and Risk Assessment, 38, 1313-1333.
https://doi.org/10.1007/s00477-023-02633-8
[29]  Zhu, R. and Joe, H. (2009) Modelling Heavy-Tailed Count Data Using a Generalised Poisson-Inverse Gaussian Family. Statistics & Probability Letters, 79, 1695-1703.
https://doi.org/10.1016/j.spl.2009.04.011
[30]  Al-Osh, M.A. and Alzaid, A.A. (1987) First-Order Integer-Valued Autoregressive (INAR(1)) Process. Journal of Time Series Analysis, 8, 261-275.
https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
[31]  Qian, L., Li, Q. and Zhu, F. (2020) Modelling Heavy-Tailedness in Count Time Series. Applied Mathematical Modelling, 82, 766-784.
https://doi.org/10.1016/j.apm.2020.02.001
[32]  Jung, R.C., Kukuk, M. and Liesenfeld, R. (2006) Time Series of Count Data: Modeling, Estimation and Diagnostics. Computational Statistics & Data Analysis, 51, 2350-2364.
https://doi.org/10.1016/j.csda.2006.08.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133