|
全视觉有机蔬菜害虫智能监测系统
|
Abstract:
随着有机蔬菜种植的兴起,害虫监测与防控成为保障蔬菜品质和产量的关键环节。传统的害虫监测方法难以满足有机蔬菜种植对精准、高效的要求。本论文设计并实现了一款全视觉害虫智能监测系统,该系统选用Goland平台,通过使用计算机视觉技术和机器学习技术对有机蔬菜害虫进行自动化的监测计数,系统主要包括病虫检测、害虫防护、数据分析、防害数据查询等模块。本系统有效提高害虫监测的准确性和效率,为病虫害防治工作提供有力的信息支持,具有广阔的应用前景。
With the rise of organic vegetable planting, pest monitoring and control have become the key links to ensure the quality and yield of vegetables. Traditional pest monitoring methods are difficult to meet the requirements of accurate and efficient organic vegetable cultivation. In this paper, a full-vision pest intelligent monitoring system was designed and implemented, which selected the Goland platform to automatically monitor and count organic vegetable pests by using computer vision technology and machine learning technology, and the system mainly included modules such as pest detection, pest protection, data analysis, and pest control data query. This system effectively improves the accuracy and efficiency of pest monitoring, provides strong information support for pest control, and has broad application prospects.
[1] | 张云慧, 程登发. 突发性暴发性害虫监测预警研究进展[J]. 植物保护, 2013, 39(5): 55-61. |
[2] | 周国民. 浅议智慧农业[J]. 农业网络信息, 2009(10): 5-7, 27. |
[3] | 张红涛, 胡玉霞, 刘新宇, 等. 农田害虫实时检测装置的设计与实现[J]. 河南农业科学, 2007(12): 63-65. |
[4] | 赵汗青, 沈佐锐, 于新文. 数学形态学在昆虫分类学上的应用研究. II. 在总科阶元上的应用研究[J]. 昆虫学报, 2003, 46(2): 201-208. |
[5] | 邹鑫. 基于YOLOv8的宁夏地区玉米害虫检测系统研究[J]. 现代计算机, 2024, 30(21): 8-13. |
[6] | 徐祥振, 丁健, 易云. 基于迁移学习的常见蔬菜害虫检测[J]. 赣南范大学学报, 2023, 44(3): 70-75. |
[7] | 刘豹, 李翌, 李峰, 鲍煦. 基于线性支持向量机的温室害虫智能识别系统[J]. 软件导刊, 2023, 22(12): 232-237. |