|
基于等几何分析的机械产品一体化流程设计
|
Abstract:
在有限元分析中,建模、仿真和优化使用不同的数据模型,从而耗费大量时间进行数据转换。为解决该问题,设计了机械产品一体化流程。该方法采用体参数化造型方法进行建模,该模型可以直接使用等几何分析进行仿真。为节省材料同时保证强度,采用等几何拓扑优化方法获取材料最佳分布。整个产品设计过程中,使用相同数据模型,无需数据转换,避免了离散误差,节约了时间开销。优化后的模型可以再分析和再优化,进而实现了建模、仿真和优化的一体化设计。结果验证了该方法在机械产品设计过程的可靠性。
In finite element analysis, different data models are used for modeling, simulation, and optimization, leading to significant time consumption due to frequent data conversions. To address this issue, an integrated process for mechanical product design has been developed. The system employs a volumetric parameterization modeling approach, enabling direct utilization of isogeometric analysis for simulation. To minimize material usage while ensuring structural strength, isogeometric topology optimization is employed to achieve the best allocation of material. Throughout the entire product design process, a unified data model is maintained, eliminating the need for data conversion, thereby avoiding discretization errors and reducing computational overhead. The optimized model can be reanalyzed and further optimized, achieving an integrated workflow of modeling, simulation, and optimization. The results validate the system’s reliability in the mechanical product design process.
[1] | Jiu, L., Zhou, Y., Zhu, J. and Zhang, W. (2019) Feature-driven Method for Structural Topology Optimization. Scientia Sinica Technologica, 49, 1177-1185. https://doi.org/10.1360/sst-2019-0054 |
[2] | Zhang, W.S., Guo, X. and Zhang, J. (2015) A New Topology Optimization Method Based on Explicit and Implicit Combination. Abstracts of Chinese Mechanics Congress 2015, Sanya, 24-26 January 2015, 338. |
[3] | Bilancia, P., Berselli, G., Bruzzone, L. and Fanghella, P. (2019) A CAD/CAE Integration Framework for Analyzing and Designing Spatial Compliant Mechanisms via Pseudo-Rigid-Body Methods. Robotics and Computer-Integrated Manufacturing, 56, 287-302. https://doi.org/10.1016/j.rcim.2018.07.015 |
[4] | Zhou, X., Ming, X. and Chen, Z. (2019) Reference Framework for Collaborative Design and Manufacturing Based on Model, Data, and Knowledge. Computer Integrated Manufacturing Systems, 25, 3116-3126. |
[5] | Wang, J., Niu, W., Ma, Y., Xue, L., Cun, H., Nie, Y., et al. (2016) A CAD/CAE-Integrated Structural Design Framework for Machine Tools. The International Journal of Advanced Manufacturing Technology, 91, 545-568. https://doi.org/10.1007/s00170-016-9721-y |
[6] | Feng, Q., Zhou, X. and Li, J. (2019) A Hybrid and Automated Approach to Adapt Geometry Model for CAD/CAE Integration. Engineering with Computers, 36, 543-563. https://doi.org/10.1007/s00366-019-00713-4 |
[7] | Hadj, R.B., Belhadj, I., Gouta, C., Trigui, M., Aifaoui, N. and Hammadi, M. (2017) An Interoperability Process between CAD System and CAE Applications Based on CAD Data. International Journal on Interactive Design and Manufacturing (IJIDeM), 12, 1039-1058. https://doi.org/10.1007/s12008-017-0445-5 |
[8] | Yoo, S., Lee, S., Kim, S., Hwang, K.H., Park, J.H. and Kang, N. (2021) Integrating Deep Learning into CAD/CAE System: Generative Design and Evaluation of 3D Conceptual Wheel. Structural and Multidisciplinary Optimization, 64, 2725-2747. https://doi.org/10.1007/s00158-021-02953-9 |
[9] | Whetten, C., Sederberg, M. and Scott, M. (2019) Isogeometric Analysis Using the *IGA_INCLUDE_BEZIER Keyword in LS-DYNA. Proceedings of the 12th European LS-DYNA Conference 2019, Koblenz, 14-16 May 2019, 1-11. |
[10] | Lee, H.H. (2023) Finite Element Simulations with ANSYS Workbench 2023: Theory, Applications, Case Studies. SDC Publications. |
[11] | Pimpalkar, A., Agrawal, V. and Gautam, S.S. (2024) Development of a Robust and Integrable Pre-Processing Tool for Isogeometric Analysis. Sādhanā, 49, Article No. 258. https://doi.org/10.1007/s12046-024-02556-2 |
[12] | Xu, G., Li, X., Huang, Z.J., et al. (2015) Geometric Computing for Isogeometric Analysis. Journal of Computer-Aided Design & Computer Graphics, 27, 570-581. |
[13] | Wu, Z. (2015) Perspectives on Isogeometric Analysis. Journal of Mechanical Engineering, 51, 114-129. https://doi.org/10.3901/jme.2015.05.114 |
[14] | Ureta, F.G., Tymms, C. and Zorin, D. (2016) Interactive Modeling of Mechanical Objects. Computer Graphics Forum, 35, 145-155. https://doi.org/10.1111/cgf.12971 |
[15] | Bendsøe, M.P. and Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering, 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2 |
[16] | Rozvany, G. (2000) The SIMP Method in Topology Optimization—Theoretical Background, Advantages and New Applications. 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, 6-8 September 2000. https://doi.org/10.2514/6.2000-4738 |
[17] | Xie, Y.M. and Steven, G.P. (1993) A simple evolutionary procedure for structural optimization. Computers & Structures, 49, 885-896. https://doi.org/10.1016/0045-7949(93)90035-c |
[18] | Wang, Y. and Benson, D.J. (2015) Isogeometric Analysis for Parameterized LSM-Based Structural Topology Optimization. Computational Mechanics, 57, 19-35. https://doi.org/10.1007/s00466-015-1219-1 |
[19] | Zhang, W., Yuan, J., Zhang, J. and Guo, X. (2015) A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model. Structural and Multidisciplinary Optimization, 53, 1243-1260. https://doi.org/10.1007/s00158-015-1372-3 |
[20] | Qian, X. (2013) Topology Optimization in B-Spline Space. Computer Methods in Applied Mechanics and Engineering, 265, 15-35. https://doi.org/10.1016/j.cma.2013.06.001 |
[21] | Svanberg, K. (1987) The Method of Moving Asymptotes—A New Method for Structural Optimization. International Journal for Numerical Methods in Engineering, 24, 359-373. https://doi.org/10.1002/nme.1620240207 |