全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

集成光电突触的衍射神经网络非线性仿真研究
Nonlinear Simulation of Diffraction Neural Networks Integrated with Optoelectronic Synapses

DOI: 10.12677/mos.2025.144335, PP. 848-857

Keywords: 衍射深度神经网络,石墨烯纳米壁光电突触,非线性激活函数
Diffractive Deep Neural Network
, Graphene Nanowalls Optoelectronic Synapses, Nonlinear Activation Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

衍射深度神经网络(diffraction deep neural network, D2NN)因其低能耗、高速度及优异的抗干扰性能,在无透镜成像和图像分类等任务中表现出显著优势。然而,由于缺乏非线性激活层,D2NN的泛化能力和拟合能力在复杂任务中受限。为此,本文提出一种基于石墨烯纳米壁(graphene nanowalls, GNWs)光电突触的非线性衍射深度神经网络。通过在D2NN输出层引入GNWs光电突触,利用其灵敏的光电响应生成与光强相关的非线性光电流,从而实现新型激活函数super-softmax。数值模拟结果表明,无论输出层是否进行归一化,super-softmax激活函数的性能均优于传统的softmax激活函数。在单层非线性D2NN (64 × 64神经元)用于MNIST手写数字识别任务时,分类精度最高达95%。本研究为实现衍射深度神经网络的闭环在线学习提供了重要的理论支持。
Diffraction deep neural network (D2NN) has shown significant advantages in tasks such as lensless imaging and image classification due to their low energy consumption, high speed, and excellent interference resistance. However, the lack of nonlinear activation layers limits the generalization and fitting capabilities of D2NN in complex tasks. To address this issue, this paper proposes a nonlinear diffraction deep neural network based on graphene nanowalls (GNWs) optoelectronic synapses. By introducing GNWs optoelectronic synapses into the output layer of the D2NN, their sensitive optoelectronic response is utilized to generate a nonlinear photocurrent that is dependent on light intensity, thereby realizing a novel activation function, super-softmax. Numerical simulation results demonstrate that the performance of the super-softmax activation function is superior to that of the traditional softmax activation function, regardless of whether the output layer is normalized. When applied to a single-layer nonlinear D2NN (64 × 64 neurons) for the MNIST handwritten digit recognition task, the classification accuracy reaches up to 95%. This study provides important theoretical support for achieving closed-loop online learning in diffraction deep neural networks.

References

[1]  Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020) Fully Hardware-Implemented Memristor Convolutional Neural Network. Nature, 577, 641-646.
https://doi.org/10.1038/s41586-020-1942-4
[2]  Woźniak, S., Pantazi, A., Bohnstingl, T. and Eleftheriou, E. (2020) Deep Learning Incorporating Biologically Inspired Neural Dynamics and In-Memory Computing. Nature Machine Intelligence, 2, 325-336.
https://doi.org/10.1038/s42256-020-0187-0
[3]  Zhang, Q., Yu, H., Barbiero, M., Wang, B. and Gu, M. (2019) Artificial Neural Networks Enabled by Nanophotonics. Light: Science & Applications, 8, Article No. 42.
https://doi.org/10.1038/s41377-019-0151-0
[4]  Thompson, R.F. (1986) The Neurobiology of Learning and Memory. Science, 233, 941-947.
https://doi.org/10.1126/science.3738519
[5]  Li, J., Mengu, D., Yardimci, N.T., Luo, Y., Li, X., Veli, M., et al. (2021) Spectrally Encoded Single-Pixel Machine Vision Using Diffractive Networks. Science Advances, 7, eabd7690.
https://doi.org/10.1126/sciadv.abd7690
[6]  Zhou, Y., Zhao, X., Xu, J., Chen, G., Tat, T., Li, J., et al. (2024) A Multimodal Magnetoelastic Artificial Skin for Underwater Haptic Sensing. Science Advances, 10, eadj8567.
https://doi.org/10.1126/sciadv.adj8567
[7]  Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., et al. (2015) Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163, 456-492.
https://doi.org/10.1016/j.cell.2015.09.029
[8]  Zhang, H., Gu, M., Jiang, X.D., Thompson, J., Cai, H., Paesani, S., et al. (2021) An Optical Neural Chip for Implementing Complex-Valued Neural Network. Nature Communications, 12, Article No. 457.
https://doi.org/10.1038/s41467-020-20719-7
[9]  Wang, T., Ma, S., Wright, L.G., Onodera, T., Richard, B.C. and McMahon, P.L. (2022) An Optical Neural Network Using Less than 1 Photon per Multiplication. Nature Communications, 13, Article No. 123.
https://doi.org/10.1038/s41467-021-27774-8
[10]  Bernstein, L., Sludds, A., Panuski, C., Trajtenberg-Mills, S., Hamerly, R. and Englund, D. (2023) Single-Shot Optical Neural Network. Science Advances, 9, eadg7904.
https://doi.org/10.1126/sciadv.adg7904
[11]  Lin, X., Rivenson, Y., Yardimci, N.T., Veli, M., Luo, Y., Jarrahi, M., et al. (2018) All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science, 361, 1004-1008.
https://doi.org/10.1126/science.aat8084
[12]  Ranno, L., Gupta, P., Gradkowski, K., Bernson, R., Weninger, D., Serna, S., et al. (2022) Integrated Photonics Packaging: Challenges and Opportunities. ACS Photonics, 9, 3467-3485.
https://doi.org/10.1021/acsphotonics.2c00891
[13]  Goi, E., Schoenhardt, S. and Gu, M. (2022) Direct Retrieval of Zernike-Based Pupil Functions Using Integrated Diffractive Deep Neural Networks. Nature Communications, 13, Article No. 7531.
https://doi.org/10.1038/s41467-022-35349-4
[14]  Dong, C., Cai, Y., Dai, S., Wu, J., Tong, G., Wang, W., et al. (2023) An Optimized Optical Diffractive Deep Neural Network with Orelu Function Based on Genetic Algorithm. Optics & Laser Technology, 160, Article ID: 109104.
https://doi.org/10.1016/j.optlastec.2022.109104
[15]  Fang, T., Li, J., Zhang, X. and Dong, X. (2021) Classification Accuracy Improvement of the Optical Diffractive Deep Neural Network by Employing a Knowledge Distillation and Stochastic Gradient Descent Β-Lasso Joint Training Framework. Optics Express, 29, 44264-4474.
https://doi.org/10.1364/oe.446890
[16]  Pour Fard, M.M., Williamson, I.A.D., Edwards, M., Liu, K., Pai, S., Bartlett, B., et al. (2020) Experimental Realization of Arbitrary Activation Functions for Optical Neural Networks. Optics Express, 28, 12138-12148.
https://doi.org/10.1364/oe.391473
[17]  Yu, J., Yang, X., Gao, G., Xiong, Y., Wang, Y., Han, J., et al. (2021) Bioinspired Mechano-Photonic Artificial Synapse Based on Graphene/MoS2 Heterostructure. Science Advances, 7, eabd9117.
https://doi.org/10.1126/sciadv.abd9117
[18]  Park, H., Kim, H., Lim, D., Zhou, H., Kim, Y., Lee, Y., et al. (2020) Retina‐Inspired Carbon Nitride‐Based Photonic Synapses for Selective Detection of UV Light. Advanced Materials, 32, Article ID: 1906899.
https://doi.org/10.1002/adma.201906899
[19]  Seo, S., Lee, J., Lee, R., Kim, T.H., Park, S., Jung, S., et al. (2021) An Optogenetics‐Inspired Flexible Van Der Waals Optoelectronic Synapse and Its Application to a Convolutional Neural Network. Advanced Materials, 33, Article ID: 2102980.
https://doi.org/10.1002/adma.202102980
[20]  Huang, X., Li, Q., Shi, W., Liu, K., Zhang, Y., Liu, Y., et al. (2021) Dual‐Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small, 17, Article ID: 2102820.
https://doi.org/10.1002/smll.202102820
[21]  Li, Y., Wang, J., Yang, Q. and Shen, G. (2022) Flexible Artificial Optoelectronic Synapse Based on Lead‐Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition. Advanced Science, 9, Article ID: 2202123.
https://doi.org/10.1002/advs.202202123
[22]  He, K., Liu, Y., Yu, J., Guo, X., Wang, M., Zhang, L., et al. (2022) Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano, 16, 9691-9700.
https://doi.org/10.1021/acsnano.2c03100
[23]  Islam, M.M., Krishnaprasad, A., Dev, D., Martinez-Martinez, R., Okonkwo, V., Wu, B., et al. (2022) Multiwavelength Optoelectronic Synapse with 2D Materials for Mixed-Color Pattern Recognition. ACS Nano, 16, 10188-10198.
https://doi.org/10.1021/acsnano.2c01035
[24]  Kim, M. and Lee, J. (2020) Synergistic Improvement of Long‐Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia‐Based Oxide‐Semiconductor Transistors. Advanced Materials, 32, Article ID: 1907826.
https://doi.org/10.1002/adma.201907826
[25]  Gregory, W., MacEachern, R., Takao, S., Lawrence, I.R., Nab, C., Deisenroth, M.P., et al. (2024) Scalable Interpolation of Satellite Altimetry Data with Probabilistic Machine Learning. Nature Communications, 15, Article No. 7453.
https://doi.org/10.1038/s41467-024-51900-x
[26]  Pang, B., Nijkamp, E. and Wu, Y.N. (2019) Deep Learning with Tensorflow: A Review. Journal of Educational and Behavioral Statistics, 45, 227-248.
https://doi.org/10.3102/1076998619872761
[27]  Wang, Z., Chen, J. and Hoi, S.C.H. (2021) Deep Learning for Image Super-Resolution: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3365-3387.
https://doi.org/10.1109/tpami.2020.2982166
[28]  Kim, T., Oh, J., Kim, N.Y., Cho, S. and Yun, S. (2021) Comparing Kullback-Leibler Divergence and Mean Squared Error Loss in Knowledge Distillation. Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, 19-27 August 2021, 2628-2635.
https://doi.org/10.24963/ijcai.2021/362
[29]  Burch, J. and Di Falco, A. (2018) Surface Topology Specific Metasurface Holograms. ACS Photonics, 5, 1762-1766.
https://doi.org/10.1021/acsphotonics.7b01449
[30]  Li, R., Dong, Y., Qian, F., Xie, Y., Chen, X., Zhang, Q., et al. (2023) CsPbBr3/Graphene Nanowall Artificial Optoelectronic Synapses for Controllable Perceptual Learning. PhotoniX, 4, Article No. 4.
https://doi.org/10.1186/s43074-023-00082-8
[31]  Blanchard, P., Higham, D.J. and Higham, N.J. (2020) Accurately Computing the Log-Sum-Exp and Softmax Functions. IMA Journal of Numerical Analysis, 41, 2311-2330.
https://doi.org/10.1093/imanum/draa038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133