|
用于实时睡眠分期的智能设备设计与实现
|
Abstract:
本文针对具有睡眠结构紊乱和睡眠障碍等睡眠问题的人群需要实时获取睡眠状态的问题,开发了一种能够采集双通道脑电信号并进行实时睡眠分期的智能设备。基于ADS1299模数转换器,采集两个通道的脑电信号,并在微处理器中进行实时的信号分割、滤波和离散小波变换等预处理。系统提取时域和频域特征,并利用支持向量机进行睡眠状态识别。采集的数据及分期结果可存储于板载SD卡中,或通过低功耗蓝牙模块实时传输至外部设备进行查看和分析。经测试,该设备能够高质量采集双通道脑电信号,睡眠状态识别准确率达86.4%。测试结果表明该设备在睡眠监测中具备准确性和实用性,能够为后续家庭和临床睡眠监测提供坚实的基础。
In this paper, aiming at the problem that people with sleep problems such as sleep structure disorders and sleep disorders need to obtain real-time sleep states, an intelligent device capable of collecting dual-channel electroencephalogram (EEG) signals and performing real-time sleep staging is developed. Based on the ADS1299 analog-to-digital converter, the EEG signals of two channels are collected, and preprocessing operations such as real-time signal segmentation, filtering, and discrete wavelet transform are carried out in the microprocessor. The system extracts time-domain and frequency-domain features and uses the Support Vector Machine (SVM) to identify sleep states. The collected data and sleep staging results can be stored in the on-board SD card or transmitted in real-time to external devices via the low-power Bluetooth module for viewing and analysis. Through testing, this device can collect dual-channel EEG signals with high quality, and the accuracy of sleep state recognition reaches 86.4%. The test results show that this device is accurate and practical in sleep monitoring, providing a solid foundation for subsequent home and clinical sleep monitoring.
[1] | 王俊秀, 张衍, 刘娜. 中国睡眠研究报告2024[M]. 北京: 社会科学文献出版社, 2024. |
[2] | Levendowski, D.J., Ferini-Strambi, L., Gamaldo, C., Cetel, M., Rosenberg, R. and Westbrook, P.R. (2017) The Accuracy, Night-to-Night Variability, and Stability of Frontopolar Sleep Electroencephalography Biomarkers. Journal of Clinical Sleep Medicine, 13, 791-803. https://doi.org/10.5664/jcsm.6618 |
[3] | Lin, C., Chuang, C., Cao, Z., Singh, A.K., Hung, C., Yu, Y., et al. (2017) Forehead EEG in Support of Future Feasible Personal Healthcare Solutions: Sleep Management, Headache Prevention, and Depression Treatment. IEEE Access, 5, 10612-10621. https://doi.org/10.1109/access.2017.2675884 |
[4] | 郭艳平, 刘聪, 侯凤贞, 等. 基于单通道脑电信号的睡眠自动分期研究[J]. 陕西师范大学学报(自然科学版), 2020, 48(6): 18-25. |
[5] | Sors, A., Bonnet, S., Mirek, S., Vercueil, L. and Payen, J. (2018) A Convolutional Neural Network for Sleep Stage Scoring from Raw Single-Channel EEG. Biomedical Signal Processing and Control, 42, 107-114. https://doi.org/10.1016/j.bspc.2017.12.001 |
[6] | 刘亚, 伍倚明, 李承炜, 等. 基于ADS1299的穿戴式脑电检测装置设计[J]. 中国医学物理学杂志, 2019, 36(11): 1317-1324. |
[7] | Berry, R.B., Budhiraja, R., Gottlieb, D.J., Gozal, D., Iber, C., Kapur, V.K., et al. (2012) Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Journal of Clinical Sleep Medicine, 8, 597-619. https://doi.org/10.5664/jcsm.2172 |
[8] | 崔丽丽, 郑赟, 孟小飞, 等. 基于经验模态-小波包分解和卷积神经网络的P300脑电信号分类研究[J]. 传感技术学报, 2022, 35(4): 511-517. |
[9] | 韩敏, 孙卓然. 基于小波变换和AdaBoost极限学习机的癫痫脑电信号分类[J]. 计算机应用, 2015, 35(9): 2701-2705+2709. |
[10] | 金峥, 贾克斌, 袁野. 基于混合注意力时序网络的睡眠分期算法研究[J]. 生物医学工程学杂志, 2021, 38(2): 241-248. |
[11] | 黎枝蕾. 基于多尺度脑电特征的跨被试疲劳检测研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2022. |
[12] | Guillot, A., Sauvet, F., During, E.H. and Thorey, V. (2020) Dreem Open Datasets: Multi-Scored Sleep Datasets to Compare Human and Automated Sleep Staging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28, 1955-1965. https://doi.org/10.1109/tnsre.2020.3011181 |
[13] | Peeters, F., Ronner, J., Bodar, L., van Os, J. and Lousberg, R. (2014) Validation of a Neurofeedback Paradigm: Manipulating Frontal EEG Alpha-Activity and Its Impact on Mood. International Journal of Psychophysiology, 93, 116-120. https://doi.org/10.1016/j.ijpsycho.2013.06.010 |