全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stokes-Cahn-Hilliard方程的二阶并行解耦算法
Second-Order Parallel Decoupled Algorithms for the Stokes-Cahn-Hilliard Equation

DOI: 10.12677/aam.2025.144204, PP. 765-774

Keywords: Stokes-Cahn-Hilliard模型,时间并行方法,谱延迟校正方法,有限元方法
Stokes-Cahn-Hilliard Model
, Time Parallel Method, Spectral Deferred Correction Method, Finite Element Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文为Stokes-Cahn-Hilliard相场模型开发了一种具有二阶时间精度的时间并行解耦算法,在时间上基于谱延迟校正方法和时间并行Parareal算法。此外,我们使用稳定化方法处理Cahn-Hilliard方程,运用了压力投影方法处理Stokes方程中压力p和速度u的耦合。相较于解耦的方案,进一步提高了算法的计算效率。最后,通过数值实验证明了它的稳定性和高效性。
In this paper, we develop a time-parallel decoupled algorithm with second-order temporal accuracy for the Stokes-Cahn-Hilliard phase-field model, based in time on the spectral-deferred correction method and the time-parallel Parareal algorithm. In addition, we use a stabilisation method for the Cahn-Hilliard equation and employ a pressure projection method for the coupling of pressure p and velocity u in the Stokes equation. Compared with the decoupled scheme, the computational efficiency of the algorithm is further improved. Finally, numerical experiments demonstrate its stability and efficiency.

References

[1]  Rayleigh, L. (1892) XX. On the Theory of Surface Forces—II. Compressible Fluids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33, 209-220.
https://doi.org/10.1080/14786449208621456
[2]  Shen, J. and Yang, X. (2015) Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows. SIAM Journal on Numerical Analysis, 53, 279-296.
https://doi.org/10.1137/140971154
[3]  Shen, J. and Yang, X. (2010) Energy Stable Schemes for Cahn-Hilliard Phase-Field Model of Two-Phase Incompressible Flows. Chinese Annals of Mathematics, Series B, 31, 743-758.
https://doi.org/10.1007/s11401-010-0599-y
[4]  Shen, J. and Yang, X. (2010) A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities. SIAM Journal on Scientific Computing, 32, 1159-1179.
https://doi.org/10.1137/09075860x
[5]  Baňas, Ľ. and Mahato, H.S. (2017) Homogenization of Evolutionary Stokes-Cahn-Hilliard Equations for Two-Phase Porous Media Flow. Asymptotic Analysis, 105, 77-95.
https://doi.org/10.3233/asy-171436
[6]  Shen, J. and Yang, X. (2010) Numerical Approximations of Allen-Cahn and Cahn-Hilliard Equations. Discrete & Continuous Dynamical SystemsA, 28, 1669-1691.
https://doi.org/10.3934/dcds.2010.28.1669
[7]  Eyre, D.J. (1998) Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation. MRS Online Proceedings Library, 529, 39-46.
https://doi.org/10.1557/proc-529-39
[8]  Kim, J. and Lee, H. (2019) A Nonlinear Convex Splitting Fourier Spectral Scheme for the Cahn-Hilliard Equation with a Logarithmic Free Energy. Bulletin of the Korean Mathematical Society, 56, 265-276.
[9]  Dutt, A., Greengard, L. and Rokhlin, V. (2000) Spectral Deferred Correction Methods for Ordinary Differential Equations. Bit Numerical Mathematics, 40, 241-266.
https://doi.org/10.1023/a:1022338906936
[10]  Minion, M.L. (2003) Semi-Implicit Spectral Deferred Correction Methods for Ordinary Differential Equations. Communications in Mathematical Sciences, 1, 471-500.
https://doi.org/10.4310/cms.2003.v1.n3.a6
[11]  Ruihan Guo, R.G. and Yan Xu, Y.X. (2024) Semi-Implicit Spectral Deferred Correction Methods Based on Second-Order Time Integration Schemes for Nonlinear PDEs. Journal of Computational Mathematics, 42, 111-133.
[12]  Gander, M.J. (2015) 50 Years of Time Parallel Time Integration. Multiple Shooting and Time Domain Decomposition Methods, Heidelberg, 6-8 May 2013, 69-113.
https://doi.org/10.1007/978-3-319-23321-5_3
[13]  Gander, M.J. and Vandewalle, S. (2007) Analysis of the Parareal Time‐Parallel Time‐Integration Method. SIAM Journal on Scientific Computing, 29, 556-578.
https://doi.org/10.1137/05064607x
[14]  Maday, Y. and Mula, O. (2020) An Adaptive Parareal Algorithm. Journal of Computational and Applied Mathematics, 377, Article 112915.
https://doi.org/10.1016/j.cam.2020.112915
[15]  Wu, S. and Zhou, T. (2017) Fast Parareal Iterations for Fractional Diffusion Equations. Journal of Computational Physics, 329, 210-226.
https://doi.org/10.1016/j.jcp.2016.10.046
[16]  Pentland, K., Tamborrino, M., Samaddar, D. and Appel, L.C. (2022) Stochastic Parareal: An Application of Probabilistic Methods to Time-Parallelization. SIAM Journal on Scientific Computing, 45, S82-S102.
https://doi.org/10.1137/21m1414231
[17]  Bu, S. and Lee, J. (2014) An Enhanced Parareal Algorithm Based on the Deferred Correction Methods for a Stiff System. Journal of Computational and Applied Mathematics, 255, 297-305.
https://doi.org/10.1016/j.cam.2013.05.001
[18]  Gander, M. and Petcu, M. (2008) Analysis of a Krylov Subspace Enhanced Parareal Algorithm for Linear Problems. ESAIM: Proceedings, 25, 114-129.
https://doi.org/10.1051/proc:082508
[19]  Minion, M.L. and Williams, S.A. (2008) Parareal and Spectral Deferred Corrections. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008, Kos, 16-20 September 2008, 388-391.
https://doi.org/10.1063/1.2990941
[20]  Minion, M. (2010) A Hybrid Parareal Spectral Deferred Corrections Method. Communications in Applied Mathematics and Computational Science, 5, 265-301.
https://doi.org/10.2140/camcos.2010.5.265
[21]  Mu, M. and Zhu, X. (2009) Decoupled Schemes for a Non-Stationary Mixed Stokes-Darcy Model. Mathematics of Computation, 79, 707-731.
https://doi.org/10.1090/s0025-5718-09-02302-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133