全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于DDPG的基站节能决策优化方法
Base Station Energy-Saving Decision Optimization Method Based on DDPG

DOI: 10.12677/hjwc.2025.152004, PP. 27-38

Keywords: 基站节能,强化学习,决策优化
Base Station Energy Saving
, Reinforcement Learning, Decision Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

在通信网络中,当用户通信需求随时间降低时,基站可执行两种节能决策:一是直接关断低负载基站,将用户的服务转移至其他基站;二是通过功率分级调节逐级降低基站的能耗,同时维持通信服务的稳定性。本研究基于深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)的基站节能决策优化方法,将综合考虑用户通信服务质量和系统能耗,选择性能更优的节能决策。实验结果表明,相较于基站保持高功率运行的基线实验,文章提出的两种节能决策能够使系统能耗和时延的综合性能分别提升47.5%和56.4%。对比两种节能决策,直接关断表现出更快的收敛特性,而功率分级调节则在能耗和时延的整体性能上更具优势,比关断决策高出16.9%。
In communication networks, when the user communication demand decreases over time, base stations can implement two energy-saving decisions: one involves directly shutting down low-load base stations and transferring user services to other operational base stations; the other entails gradually reducing the energy consumption of base stations through hierarchical power adjustment, ensuring that communication services remain stable. In this paper, the base station energy-saving decision optimization method based on Deep Deterministic Policy Gradient (DDPG) will comprehensively consider the user communication service quality and system energy consumption and select the optimal energy-saving decision. The experimental results show that, compared with the baseline experiment in which base stations maintain high power operation, the two energy-saving decisions proposed in this paper can improve the comprehensive performance of system energy consumption and delay by 47.5% and 56.4%, respectively. When comparing the two energy-saving decisions, direct shutdown shows faster convergence, while hierarchical power adjustment has more advantages in the overall performance of energy consumption and delay, representing a 16.9% improvement over the shutdown decision.

References

[1]  李丽锦. 基于用户关联的基站休眠策略研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022.
[2]  费玲玲. 5G通信基站供电节能技术应用及智能化分析[J]. 信息与电脑(理论版), 2024, 36(22): 140-142.
[3]  于昌平, 王琦, 吴舒坦, 等. 考虑负荷时空迁移的5G基站与配电网协同优化运行[J]. 电力自动化设备, 2024, 44(12): 195-203.
[4]  Peng, J., Hong, P. and Xue, K. (2014) Stochastic Analysis of Optimal Base Station Energy Saving in Cellular Networks with Sleep Mode. IEEE Communications Letters, 18, 612-615.
https://doi.org/10.1109/lcomm.2014.030114.140241
[5]  Chang, P. and Miao, G. (2016) Joint Optimization of Base Station Deep-Sleep and DTX Micro-Sleep. 2016 IEEE Globecom Workshops (GC Wkshps), Washington, 4-8 December 2016, 1-6.
https://doi.org/10.1109/glocomw.2016.7848943
[6]  Vereecken, W., Deruyck, M., Colle, D., Joseph, W., Pickavet, M., Martens, L., et al. (2012) Evaluation of the Potential for Energy Saving in Macrocell and Femtocell Networks Using a Heuristic Introducing Sleep Modes in Base Stations. EURASIP Journal on Wireless Communications and Networking, 2012, 1-14.
https://doi.org/10.1186/1687-1499-2012-170
[7]  Cai, S., Che, Y., Duan, L., Wang, J., Zhou, S. and Zhang, R. (2016) Green 5G Heterogeneous Networks through Dynamic Small-Cell Operation. IEEE Journal on Selected Areas in Communications, 34, 1103-1115.
https://doi.org/10.1109/jsac.2016.2520217
[8]  Song, Y., Lim, S.H. and Jeon, S. (2023) Handover Decision Making for Dense HetNets: A Reinforcement Learning Approach. IEEE Access, 11, 24737-24751.
https://doi.org/10.1109/access.2023.3254557
[9]  Li, Z., Wang, Y., Fan, Y., Wang, Z., Lin, S. and Sun, L. (2024) Base Station Energy Saving Based on Imitation Learning in 5G Network. Journal of Physics: Conference Series, 2829, Article 012012.
https://doi.org/10.1088/1742-6596/2829/1/012012
[10]  Barbarossa, S., Sardellitti, S. and Di Lorenzo, P. (2014) Communicating While Computing: Distributed Mobile Cloud Computing over 5G Heterogeneous Networks. IEEE Signal Processing Magazine, 31, 45-55.
https://doi.org/10.1109/msp.2014.2334709

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133