|
Material Sciences 2025
压电生物材料与生物电用于骨组织工程
|
Abstract:
生物支架模拟组织/细胞微环境在骨组织工程中具有巨大的潜力。近年来,压电生物电活性生物材料不仅能够满足作为细胞粘附和结构支撑的支架,而且能够调节细胞/组织行为和功能,特别是产生生物电辅助细胞和组织再生的机制层面,在近些年来越来越受到关注。更重要的是,生物电刺激可以调节许多的生物过程,从细胞周期、迁移、增殖和分化到神经传导、肌肉收缩、胚胎发生和组织再生。本文介绍了骨形成和修复的过程。然后,讨论了生物电在促进骨修复方面具有积极的促进作用,压电生物材料介导的电刺激和应用途径。系统综述了压电生物材料在调节成骨和破骨细胞命运从而促进骨组织再生方面的相关前沿研究和进展。最后展望了压电生物活性材料的未来前景。
Bioscaffolds have great potential in bone tissue engineering to simulate tissue/cell microenvironment. In recent years, piezoelectric bioelectroactive biomaterials not only can be used as scaffolds for cell adhesion and structural support, but also can regulate cell/tissue behavior and function, especially in the mechanism of generating bioelectricity to assist cell and tissue regeneration, which has attracted more and more attention in recent years. More importantly, bioelectrical stimulation can regulate many biological processes, from cell cycle, migration, proliferation, and differentiation to nerve conduction, muscle contraction, embryogenesis, and tissue regeneration. This article describes the process of bone formation and repair. Then, the active role of bioelectricity in promoting bone repair, the electrical stimulation mediated by piezoelectric biomaterial and the application ways are discussed. This paper reviews the research progress of piezoelectric biomaterials in regulating the fate of osteoblast and osteoclast to promote bone regeneration. In addition, future investigation work on the piezoelectric bioactive materials is also envisioned.
[1] | Yasuda, I.W. (1977) Electrical Callus and Callus Formation by Electret. Clinical Orthopaedics and Related Research, 124, 53-56. https://doi.org/10.1097/00003086-197705000-00007 |
[2] | Sun, Y., Zeng, K. and Li, T. (2020) Piezo-/Ferroelectric Phenomena in Biomaterials: A Brief Review of Recent Progress and Perspectives. Science China Physics, Mechanics & Astronomy, 63, Article No. 278701. https://doi.org/10.1007/s11433-019-1500-y |
[3] | Wieland, D.C.F., Krywka, C., Mick, E., Willumeit-Römer, R., Bader, R. and Kluess, D. (2015) Investigation of the Inverse Piezoelectric Effect of Trabecular Bone on a Micrometer Length Scale Using Synchrotron Radiation. Acta Biomaterialia, 25, 339-346. https://doi.org/10.1016/j.actbio.2015.07.021 |
[4] | Lanyon, L.E. (1993) Skeletal Responses to Physical Loading. In: Lanyon, L.E., Ed., Physiology and Pharmacology of Bone, Springer, 485-505. https://doi.org/10.1007/978-3-642-77991-6_14 |
[5] | Salhotra, A., Shah, H.N., Levi, B. and Longaker, M.T. (2020) Mechanisms of Bone Development and Repair. Nature Reviews Molecular Cell Biology, 21, 696-711. https://doi.org/10.1038/s41580-020-00279-w |
[6] | da Silva, L.P., Kundu, S.C., Reis, R.L. and Correlo, V.M. (2020) Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends in Biotechnology, 38, 24-49. https://doi.org/10.1016/j.tibtech.2019.07.002 |
[7] | Bab, I., Ashton, B.A., Gazit, D., Marx, G., Williamson, M.C. and Owen, M.E. (1986) Kinetics and Differentiation of Marrow Stromal Cells in Diffusion Chambers in Vivo. Journal of Cell Science, 84, 139-151. https://doi.org/10.1242/jcs.84.1.139 |
[8] | Keynes, R.D. (1975) The Ionic Channels in Excitable Membranes. Ciba Foundation Symposium, No. 31, 191-203. |
[9] | Crowder, S.W., Prasai, D., Rath, R., Balikov, D.A., Bae, H., Bolotin, K.I., et al. (2013) Three-Dimensional Graphene Foams Promote Osteogenic Differentiation of Human Mesenchymal Stem Cells. Nanoscale, 5, 4171-4176. https://doi.org/10.1039/c3nr00803g |
[10] | Lee, W.C., Lim, C.H., Kenry, Su, C., Loh, K.P. and Lim, C.T. (2014) Cell-Assembled Graphene Biocomposite for Enhanced Chondrogenic Differentiation. Small, 11, 963-969. https://doi.org/10.1002/smll.201401635 |
[11] | Jang, J., Castano, O. and Kim, H. (2009) Electrospun Materials as Potential Platforms for Bone Tissue Engineering. Advanced Drug Delivery Reviews, 61, 1065-1083. https://doi.org/10.1016/j.addr.2009.07.008 |
[12] | Liu, D., Yi, C., Zhang, D., Zhang, J. and Yang, M. (2010) Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano, 4, 2185-2195. https://doi.org/10.1021/nn901479w |
[13] | McCaig, C.D. and Zhao, M. (1997) Physiological Electrical Fields Modify Cell Behaviour. BioEssays, 19, 819-826. https://doi.org/10.1002/bies.950190912 |
[14] | Chen, J., Yu, M., Guo, B., Ma, P.X. and Yin, Z. (2018) Conductive Nanofibrous Composite Scaffolds Based on In-Situ Formed Polyaniline Nanoparticle and Polylactide for Bone Regeneration. Journal of Colloid and Interface Science, 514, 517-527. https://doi.org/10.1016/j.jcis.2017.12.062 |
[15] | Hu, W., Chen, T., Tsao, C. and Cheng, Y. (2018) The Effects of Substrate‐Mediated Electrical Stimulation on the Promotion of Osteogenic Differentiation and Its Optimization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 1607-1619. https://doi.org/10.1002/jbm.b.34253 |
[16] | Sun, M., Deng, Z., Shi, F., Zhou, Z., Jiang, C., Xu, Z., et al. (2020) Rebamipide-Loaded Chitosan Nanoparticles Accelerate Prostatic Wound Healing by Inhibiting M1 Macrophage-Mediated Inflammation via the NF-κB Signaling Pathway. Biomaterials Science, 8, 912-925. https://doi.org/10.1039/c9bm01512d |
[17] | Kumar, A., Nune, K.C. and Misra, R.D.K. (2016) Electric Field-Mediated Growth of Osteoblasts—The Significant Impact of Dynamic Flow of Medium. Biomaterials Science, 4, 136-144. https://doi.org/10.1039/c5bm00350d |
[18] | MacLean, P.D., Chapman, E.E., Dobrowolski, S.L., Thompson, A. and Barclay, L.R.C. (2008) Pyrroles as Antioxidants: Solvent Effects and the Nature of the Attacking Radical on Antioxidant Activities and Mechanisms of Pyrroles, Dipyrrinones, and Bile Pigments. The Journal of Organic Chemistry, 73, 6623-6635. https://doi.org/10.1021/jo8005073 |
[19] | Curie, J. and Curie, P. (1880) Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société minéralogique de France, 3, 90-93. https://doi.org/10.3406/bulmi.1880.1564 |
[20] | Park, J.B., Kelly, B.J., Kenner, G.H., von Recum, A.F., Grether, M.F. and Coffeen, W.W. (1981) Piezoelectric Ceramic Implants: In vivo Results. Journal of Biomedical Materials Research, 15, 103-110. https://doi.org/10.1002/jbm.820150114 |
[21] | Liu, J., Qi, W., Xu, M., Thomas, T., Liu, S. and Yang, M. (2022) Piezocatalytic Techniques in Environmental Remediation. Angewandte Chemie International Edition, 62, e202213927. https://doi.org/10.1002/anie.202213927 |
[22] | Kang, Y., Lei, L., Zhu, C., Zhang, H., Mei, L. and Ji, X. (2021) Piezo-photocatalytic Effect Mediating Reactive Oxygen Species Burst for Cancer Catalytic Therapy. Materials Horizons, 8, 2273-2285. https://doi.org/10.1039/d1mh00492a |
[23] | Peng, M., Zhao, Q., Wang, M. and Du, X. (2023) Reconfigurable Scaffolds for Adaptive Tissue Regeneration. Nanoscale, 15, 6105-6120. https://doi.org/10.1039/d3nr00281k |
[24] | Wang, R., Sui, J. and Wang, X. (2022) Natural Piezoelectric Biomaterials: A Biocompatible and Sustainable Building Block for Biomedical Devices. ACS Nano, 16, 17708-17728. https://doi.org/10.1021/acsnano.2c08164 |
[25] | Wu, L., Gao, H., Han, Q., Guan, W., Sun, S., Zheng, T., et al. (2023) Piezoelectric Materials for Neuroregeneration: A Review. Biomaterials Science, 11, 7296-7310. https://doi.org/10.1039/d3bm01111a |
[26] | Zaszczynska, A., Sajkiewicz, P. and Gradys, A. (2020) Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers, 12, Article 161. https://doi.org/10.3390/polym12010161 |
[27] | Damaraju, S.M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., et al. (2017) Three-Dimensional Piezoelectric Fibrous Scaffolds Selectively Promote Mesenchymal Stem Cell Differentiation. Biomaterials, 149, 51-62. https://doi.org/10.1016/j.biomaterials.2017.09.024 |
[28] | Samadi, A., Salati, M.A., Safari, A., Jouyandeh, M., Barani, M., Singh Chauhan, N.P., et al. (2022) Comparative Review of Piezoelectric Biomaterials Approach for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 33, 1555-1594. https://doi.org/10.1080/09205063.2022.2065409 |
[29] | Ribeiro, C., Sencadas, V., Correia, D.M. and Lanceros-Méndez, S. (2015) Piezoelectric Polymers as Biomaterials for Tissue Engineering Applications. Colloids and Surfaces B: Biointerfaces, 136, 46-55. https://doi.org/10.1016/j.colsurfb.2015.08.043 |
[30] | Jianqing, F., Huipin, Y. and Xingdong, Z. (1997) Promotion of Osteogenesis by a Piezoelectric Biological Ceramic. Biomaterials, 18, 1531-1534. https://doi.org/10.1016/s0142-9612(97)80004-x |
[31] | Liu, Z., Wan, X., Wang, Z.L. and Li, L. (2021) Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 33, Article ID: 2007429. https://doi.org/10.1002/adma.202007429 |
[32] | West, C.R. and Bowden, A.E. (2012) Using Tendon Inherent Electric Properties to Consistently Track Induced Mechanical Strain. Annals of Biomedical Engineering, 40, 1568-1574. https://doi.org/10.1007/s10439-011-0504-1 |
[33] | Liu, Y., Wang, Y., Chow, M., Chen, N.Q., Ma, F., Zhang, Y., et al. (2013) Glucose Suppresses Biological Ferroelectricity in Aortic Elastin. Physical Review Letters, 110, Article ID: 168101. https://doi.org/10.1103/physrevlett.110.168101 |
[34] | Pate, F.D. (1994) Bone Chemistry and Paleodiet. Journal of Archaeological Method and Theory, 1, 161-209. https://doi.org/10.1007/bf02231415 |
[35] | Ciofani, G., Ricotti, L. and Mattoli, V. (2010) Preparation, Characterization and in Vitro Testing of Poly(Lactic-Co-Glycolic) Acid/Barium Titanate Nanoparticle Composites for Enhanced Cellular Proliferation. Biomedical Microdevices, 13, 255-266. https://doi.org/10.1007/s10544-010-9490-6 |
[36] | deVet, T., et al. (2021) Bone Bioelectricity and Bone-Cell Response to Electrical Stimulation: A Review. Critical Reviews in Biomedical Engineering, 49, 1-19. https://doi.org/10.1615/CritRevBiomedEng.2021035327 |
[37] | Wu, Z., Tang, T., Guo, H., Tang, S., Niu, Y., Zhang, J., et al. (2014) In Vitro Degradability, Bioactivity and Cell Responses to Mesoporous Magnesium Silicate for the Induction of Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 120, 38-46. https://doi.org/10.1016/j.colsurfb.2014.04.010 |
[38] | Frias, C., Reis, J., Capela e Silva, F., Potes, J., Simões, J. and Marques, A.T. (2010) Polymeric Piezoelectric Actuator Substrate for Osteoblast Mechanical Stimulation. Journal of Biomechanics, 43, 1061-1066. https://doi.org/10.1016/j.jbiomech.2009.12.010 |
[39] | Guillot-Ferriols, M., Rodríguez-Hernández, J.C., Correia, D.M., Carabineiro, S.A.C., Lanceros-Méndez, S., Gómez Ribelles, J.L., et al. (2020) Poly(vinylidene) Fluoride Membranes Coated by Heparin/Collagen Layer-By-Layer, Smart Biomimetic Approaches for Mesenchymal Stem Cell Culture. Materials Science and Engineering: C, 117, Article ID: 111281. https://doi.org/10.1016/j.msec.2020.111281 |
[40] | Ikada, Y., Shikinami, Y., Hara, Y., Tagawa, M. and Fukada, E. (1996) Enhancement of Bone Formation by Drawn Poly(l-lactide). Journal of Biomedical Materials Research, 30, 553-558. https://doi.org/10.1002/(sici)1097-4636(199604)30:4<553::aid-jbm14>3.0.co;2-i |
[41] | Chen, S., Tong, X., Huo, Y., Liu, S., Yin, Y., Tan, M., et al. (2024) Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. Advanced Materials, 36, Article No. 18833. https://doi.org/10.1002/adma.202406192 |
[42] | Shimono, T., Matsunaga, S., Fukada, E., Hattori, T. and Shikinami, Y. (1996) The Effects of Piezoelectric Poly L Lactic Acid Films in Promoting Ossification in Vivo. In Vivo, 10, 471-476. |
[43] | Wang, Y., Wu, Q. and Chen, G. (2004) Attachment, Proliferation and Differentiation of Osteoblasts on Random Biopolyester Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Scaffolds. Biomaterials, 25, 669-675. https://doi.org/10.1016/s0142-9612(03)00561-1 |
[44] | Lee, J.H., Shin, Y.C., Lee, S., Jin, O.S., Kang, S.H., Hong, S.W., et al. (2015) Enhanced Osteogenesis by Reduced Graphene Oxide/hydroxyapatite Nanocomposites. Scientific Reports, 5, Article No. 18833. https://doi.org/10.1038/srep18833 |
[45] | Choe, G., Oh, S., Seok, J.M., Park, S.A. and Lee, J.Y. (2019) Graphene Oxide/Alginate Composites as Novel Bioinks for Three-Dimensional Mesenchymal Stem Cell Printing and Bone Regeneration Applications. Nanoscale, 11, 23275-23285. https://doi.org/10.1039/c9nr07643c |
[46] | Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V.P., et al. (2014) Dynamic Piezoelectric Stimulation Enhances Osteogenic Differentiation of Human Adipose Stem Cells. Journal of Biomedical Materials Research Part A, 103, 2172-2175. https://doi.org/10.1002/jbm.a.35368 |
[47] | Kenry, Lee, W.C., Loh, K.P. and Lim, C.T. (2018) When Stem Cells Meet Graphene: Opportunities and Challenges in Regenerative Medicine. Biomaterials, 155, 236-250. https://doi.org/10.1016/j.biomaterials.2017.10.004 |
[48] | Fernandes, M.M., Correia, D.M., Ribeiro, C., Castro, N., Correia, V. and Lanceros-Mendez, S. (2019) Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 11, 45265-45275. https://doi.org/10.1021/acsami.9b14001 |
[49] | Cui, L., Zhang, J., Zou, J., Yang, X., Guo, H., Tian, H., et al. (2020) Electroactive Composite Scaffold with Locally Expressed Osteoinductive Factor for Synergistic Bone Repair Upon Electrical Stimulation. Biomaterials, 230, Article ID: 119617. https://doi.org/10.1016/j.biomaterials.2019.119617 |
[50] | Zheng, T., Huang, Y., Zhang, X., Cai, Q., Deng, X. and Yang, X. (2020) Mimicking the Electrophysiological Microenvironment of Bone Tissue Using Electroactive Materials to Promote Its Regeneration. Journal of Materials Chemistry B, 8, 10221-10256. https://doi.org/10.1039/d0tb01601b |
[51] | Kitsara, M., Blanquer, A., Murillo, G., Humblot, V., De Bragança Vieira, S., Nogués, C., et al. (2019) Permanently Hydrophilic, Piezoelectric PVDF Nanofibrous Scaffolds Promoting Unaided Electromechanical Stimulation on Osteoblasts. Nanoscale, 11, 8906-8917. https://doi.org/10.1039/c8nr10384d |
[52] | Liu, Y., Dzidotor, G., Le, T.T., Vinikoor, T., Morgan, K., Curry, E.J., et al. (2022) Exercise-Induced Piezoelectric Stimulation for Cartilage Regeneration in Rabbits. Science Translational Medicine, 14, eabi7282. https://doi.org/10.1126/scitranslmed.abi7282 |
[53] | More, N. and Kapusetti, G. (2017) Piezoelectric Material—A Promising Approach for Bone and Cartilage Regeneration. Medical Hypotheses, 108, 10-16. https://doi.org/10.1016/j.mehy.2017.07.021 |
[54] | Yang, F., Li, J., Long, Y., Zhang, Z., Wang, L., Sui, J., et al. (2021) Wafer-Scale Heterostructured Piezoelectric Bio-Organic Thin Films. Science, 373, 337-342. https://doi.org/10.1126/science.abf2155 |
[55] | Kramp, B., Bernd, H., Schumacher, W., Blynow, M., Schmidt, W., Kunze, C., et al. (2002) Polyhydroxybuttersäure (PHB)-Folien und-Platten zur Defektdeckung des knöchernen Schädels im Kaninchenmodell. Laryngo-Rhino-Otologie, 81, 351-356. https://doi.org/10.1055/s-2002-28343 |
[56] | Rocha, L.B., Goissis, G. and Rossi, M.A. (2002) Biocompatibility of Anionic Collagen Matrix as Scaffold for Bone Healing. Biomaterials, 23, 449-456. https://doi.org/10.1016/s0142-9612(01)00126-0 |
[57] | Wroe, J.A., Johnson, C.T. and García, A.J. (2019) Bacteriophage Delivering Hydrogels Reduce Biofilm Formation in Vitro and Infection in Vivo. Journal of Biomedical Materials Research Part A, 108, 39-49. https://doi.org/10.1002/jbm.a.36790 |
[58] | Guo, S., Zhang, Z., Cao, L., Wu, T., Li, B. and Cui, Y. (2023) Nanocomposites Containing ZnO-TiO2-Chitosan and Berbamine Promote Osteoblast Differentiation, Proliferation, and Calcium Mineralization in MG63 Osteoblasts. Process Biochemistry, 124, 63-70. https://doi.org/10.1016/j.procbio.2022.11.004 |
[59] | Deng, J., Song, Q., Liu, S., Pei, W., Wang, P., Zheng, L., et al. (2022) Advanced Applications of Cellulose-Based Composites in Fighting Bone Diseases. Composites Part B: Engineering, 245, Article ID: 110221. https://doi.org/10.1016/j.compositesb.2022.110221 |