|
考虑需求响应的氢储能辅助火电机组调峰策略
|
Abstract:
高比例可再生能源并网加剧了电力系统调峰压力,传统火电机组主导的调峰模式面临灵活性不足与运行成本攀升的双重挑战。为此,本研究提出一种考虑需求响应的氢储能辅助火电机组调峰策略。首先,本文基于氢储能系统各设备单元的运行特性,提出氢储能单元–火电机组联合承担旋转备用的策略,提升系统的调峰灵活性,降低火电机组的调峰压力。然后,本文建立考虑用户用能舒适度和购电满意度的需求响应模型,该模型在调节电价与负荷的同时兼顾消费者用能心理变化特点使得本调峰策略更符合实际。接着,考虑需求响应与氢储能共同辅助火电机组调峰以实现各类资源的协调调度,提高新能源的消纳量,降低净负荷峰谷差。最后,通过改进IEEE30节点系统仿真分析,验证所提策略调峰有效性和经济性。
The integration of high-proportion renewable energy sources has intensified peak regulation pressure on power systems, presenting dual challenges of insufficient flexibility and rising operational costs for traditional thermal power-dominated peak regulation models. To address this, this study proposes a hydrogen energy storage-assisted thermal power unit peak regulation strategy incorporating demand response. Firstly, based on the operational characteristics of hydrogen energy storage system components, a strategy is developed where hydrogen energy storage units and thermal power units share rotational reserve responsibilities. This approach improves system peak regulation flexibility and alleviates thermal unit load. Subsequently, a demand response model is formulated to balance user energy comfort and electricity purchasing satisfaction. By dynamically adjusting electricity prices and loads while accounting for consumer psychological preferences, the strategy aligns with real-world behavior patterns. Furthermore, the combined effects of demand response and hydrogen energy storage are leveraged to achieve synergistic dispatch, maximizing renewable energy integration and minimizing net load peak-to-valley differences. Finally, simulation analysis using a modified IEEE 30-bus system demonstrates the proposed strategy’s effectiveness in enhancing peak regulation performance and economic efficiency.
[1] | 国家能源局. 2024年可再生能源并网运行情况[EB/OL]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html, 2025-03-07. |
[2] | 朱正印, 刁智伟, 毕素玲, 等. 新能源电力系统中储能技术的应用探究[J]. 电工技术, 2023(S1): 253-255. |
[3] | 包宇庆, 王蓓蓓, 李扬, 等. 考虑大规模风电接入并计及多时间尺度需求响应资源协调优化的滚动调度模型[J]. 中国电机工程学报, 2016, 36(17): 4589-4600. |
[4] | 崔杨, 周慧娟, 仲悟之, 等. 考虑广义储能与火电联合调峰的日前-日内两阶段滚动优化调度[J]. 电网技术, 2021, 45(1): 10-20. |
[5] | 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986. |
[6] | 阮景昕, 王跃社, 张俊峰, 等. 基于氢储能的风光氢能源系统能质转换优化策略[J]. 工程热物理学报, 2023, 44(2): 413-421. |
[7] | 司杨, 陈来军, 麻林瑞, 等. 考虑氢储能热平衡的风-氢混合系统优化调度方法[J]. 电器与能效管理技术, 2021(11): 15-21. |
[8] | 王文烨, 姜飞, 张新鹤, 李志常, 郭祺, 何桂雄. 含规模氢能综合利用的高比例风光多能源系统低碳灵活调度[J]. 电网技术, 2024, 48(1): 197-211. |
[9] | 陈铭宏天, 耿江海, 赵雨泽, 等. 基于两阶段随机优化的电氢耦合微电网周运行策略[J/OL]. 中国电力: 1-9. https://link.cnki.net/urlid/11.3265.TM.20241219.1508.002, 2024-12-26. |
[10] | 国家发展改革委网站. 关于印发《加快构建新型电力系统行动方案(2024-2027年)》的通知[EB/OL]. https://www.gov.cn/zhengce/zhengceku/202408/content_6966863.htm, 2024-07-25. |
[11] | 邓婷婷, 娄素华, 田旭, 等. 计及需求响应与火电深度调峰的含风电系统优化调度[J]. 电力系统自动化, 2019, 43(15): 34-41. |
[12] | 崔杨, 张家瑞, 仲悟之, 等. 考虑源-荷多时间尺度协调优化的大规模风电接入多源电力系统调度策略[J]. 电网技术, 2021, 45(5): 1828-1837. |
[13] | 崔杨, 张汇泉, 仲悟之, 等. 计及价格型需求响应及CSP电站参与的风电消纳日前调度[J]. 电网技术, 2020, 44(1): 183-191. |
[14] | Wang, L. and Wei, W. (2023) A Multi-Time Scale Low Carbon Scheduling Optimization Method for Integrated Energy System Considering Source-Load. Journal of Electrotechnology, Electrical Engineering and Management, 6, 28-36. |
[15] | Karimi, H. (2024) A Tri-Objectives Scheduling Model for Renewable-Hydrogen-Based Microgrid System Considering Hydrogen Storage System and Demand-Side Management. International Journal of Hydrogen Energy, 68, 1412-1422. https://doi.org/10.1016/j.ijhydene.2024.04.330 |
[16] | 张文轩, 苏珈, 杜欣慧, 等. 计及需求响应的电-氢-气综合能源系统分布式鲁棒规划[J/OL]. 电力建设: 1-16. https://link.cnki.net/urlid/11.2583.tm.20250317.1030.004, 2025-03-22. |
[17] | 袁桂丽, 丁宁, 杨彪, 等. 源网荷储协同优化的主动配电网日前调度[J]. 科学技术与工程, 2024, 24(24): 10337-10347. |
[18] | 张羽飞. 计及风光不确定性和需求响应的多能互补系统优化调度[D]: [硕士学位论文]. 西安: 西安理工大学, 2024. |
[19] | 周慧娟. 考虑源-荷-储联合调峰的含风电电力系统优化调度[D]: [硕士学位论文]. 吉林: 东北电力大学, 2021. |