全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于动态价格因素下的新疆布鲁氏菌病最优控制策略研究
Research on Optimal Brucellosis Control Strategy in Xinjiang Based on Dynamic Price Factors

DOI: 10.12677/aam.2025.144211, PP. 843-865

Keywords: 最优控制,市场价格,布鲁氏菌病,养殖策略
Optimal Control
, Market Price, Brucellosis, Breeding Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,新疆地区动物感染布鲁氏菌病的发病率以及新发人间病例呈持续上升趋势,这不仅对畜牧业发展构成了显著影响,而且给公共卫生安全带来了严峻挑战。因此,加强布鲁氏菌病风险评估与防控工作,对于保障畜牧业的可持续发展具有关键意义。然而畜牧业的发展不仅受到动物疫病因素的影响,市场价格与供需关系等经济因素同样发挥重要作用。基于上述背景,本文将市场价格因素与布鲁氏菌病传播特点相结合,建立了受动态价格影响的布鲁氏菌病传播动力学模型。首先对此模型的无病平衡点及基本再生数进行了求解和验证。其次通过对传染病模型施加三种控制措施,并以实现最小传染规模和最低防控成本为目标,构建了目标函数。最后在数值模拟中,选取新疆维吾尔自治区2011至2023年的活羊出栏价格数据以及人间布鲁氏菌病病例数,对模型进行参数估计,验证了其合理性。同时,通过参数敏感性分析和数值实验,得出结论:在保持牲畜种群规模不扩张的前提下,选择出栏牲畜的策略有利于传染病的控制;而当三种控制策略联合施行时,实现疾病防控效果最优并且疾病控制成本最低。
In recent years, the incidence of brucellosis infection in animals and new human cases in Xinjiang has been steadily increasing, which not only has a significant impact on the development of animal husbandry, but also poses a serious challenge to public health safety. Therefore, strengthening the risk assessment, prevention and control of brucellosis is essential to ensure the sustainable development of animal husbandry. However, the development of animal husbandry is not only influenced by animal diseases, but also by economic factors such as market prices and supply and demand relations, which also play an important role. Based on the above background, this paper combines the market price factor with the characteristics of brucellosis transmission and establishes a model of brucellosis transmission dynamics affected by dynamic price. Firstly, the disease-free equilibrium point and the basic regeneration number of this model are solved and verified. Secondly, an objective function was constructed by imposing three control measures on the transmission model and aiming to achieve the minimum level of transmission and the minimum cost of prevention and control. Finally, in the numerical simulation, the live sheep slaughter price data from 2011 to 2023 and the number of human brucellosis cases in Xinjiang Uygur Autonomous Region were selected to estimate the parameters of the model and verify its reasonableness. At the same time, through parameter sensitivity analysis and numerical experiments, it was concluded that the strategy of choosing livestock selling is conducive to the control of infectious diseases under the premise that the size of the livestock population does not increase; and when the three control strategies are implemented together, the optimal effect of disease prevention and control and the lowest cost of disease control can be achieved.

References

[1]  Corbel, M.J. (1997) Brucellosis: An Overview. Emerging Infectious Diseases, 3, 213-221.
https://doi.org/10.3201/eid0302.970219
[2]  Ma, S., Wang, X., Wang, M., Liu, Z. and Li, Z. (2021) A Retrospective Survey of Brucella Melitensis Human Infection in Hainan Province, China. Biosafety and Health, 3, 131-135.
https://doi.org/10.1016/j.bsheal.2021.01.002
[3]  张武浩. 牛羊养殖中的布病防治问题研究[J]. 今日畜牧兽医, 2021, 37(4): 23.
[4]  木合塔尔·艾山, 何海波, 等. 新疆人间布鲁氏菌病防治70年历程[J]. 疾病预防控制通报, 2020, 35(6): 56-60.
[5]  亚里昆·买买提依明, 赵江山, 等. 2021-2023年新疆维吾尔自治区人间布鲁氏菌病监测数据分析[J]. 疾病监测, 2024, 39(11): 1405-1409.
[6]  Liang, G.Z. and Fang, H.W. (2022) Transmission Dynamics of a Brucellosis Model with Incubation Period. International Journal of Biomathematics, 16, 24-25.
[7]  Hou, Q. and Zhang, F. (2016) Global Dynamics of a General Brucellosis Model Discrete Delay. Journal of Applied Analysis and Computation, 6, 227-241.
[8]  Hu, J., Zhang, X., Yang, H., Zhang, S., Wang, T., An, S., et al. (2021) Brucellosis Screening and Follow-Up of Seropositive Asymptomatic Subjects among Household Members of Shepherds in China. European Journal of Clinical Microbiology & Infectious Diseases, 40, 1325-1328.
https://doi.org/10.1007/s10096-020-04115-z
[9]  Lolika, P.O. and Mushayabasa, S. (2018) Dynamics and Stability Analysis of a Brucellosis Model with Two Discrete Delays. Discrete Dynamics in Nature and Society, 2018, 1-20.
https://doi.org/10.1155/2018/6456107
[10]  Zhang, J., Sun, G., Sun, X., Hou, Q., Li, M., Huang, B., et al. (2014) Prediction and Control of Brucellosis Transmission of Dairy Cattle in Zhejiang Province, China. PLOS ONE, 9, e108592.
https://doi.org/10.1371/journal.pone.0108592
[11]  Feng, J.W. and Hou, Q. (2020) Analysis of Brucellosis Dynamic Model with the Number of Infected People as the Detection Information. Journal of Southwest China Normal University (Natural Science Edition), 45, 24-31.
[12]  Li, M., Pei, X., Zhang, J. and Li, L. (2019) Asymptotic Analysis of Endemic Equilibrium to a Brucellosis Model. Mathematical Biosciences and Engineering, 16, 5836-5850.
https://doi.org/10.3934/mbe.2019291
[13]  Li, M.T. (2014) Dynamic Analysis of Sheep Brucellosis with Stage Structure. Highlights of Science Paper Online, 7, 52-57.
[14]  Nie, J., Sun, G., Sun, X., Zhang, J., Wang, N., Wang, Y., et al. (2014) Modeling the Transmission Dynamics of Dairy Cattle Brucellosis in Jilin Province, China. Journal of Biological Systems, 22, 533-554.
https://doi.org/10.1142/s021833901450020x
[15]  刘星星, 史光珍, 张睿, 等. 新疆牧区人与牛羊布鲁氏杆菌病流行病学调查及风险因素分析[J]. 畜牧兽医科技信息, 2024(6): 43-46.
[16]  郑汝芸, 罗鹏飞, 舒展, 等. 2016-2021年新疆青河县牛羊布鲁氏菌病血清学监测[J]. 草食家畜, 2022(5): 39-46.
[17]  廖健慧, 陆杏华, 周升志, 等. 浅谈新疆地区牛羊布氏杆菌病的流行情况及危害[J]. 江西畜牧兽医杂志, 2024(6): 43-46.
[18]  Rahman, M.S., Duary, A., Shaikh, A.A. and Bhunia, A.K. (2020) An Application of Parametric Approach for Interval Differential Equation in Inventory Model for Deteriorating Items with Selling-Price-Dependent Demand. Neural Computing and Applications, 32, 14069-14085.
https://doi.org/10.1007/s00521-020-04806-w
[19]  Shone, R. (2001) An Introduction to Economic Dynamics. Cambriage University Press.
[20]  Auger, P., Mchich, R., Raïssi, N. and Kooi, B.W. (2010) Effects of Market Price on the Dynamics of a Spatial Fishery Model: Over-Exploited Fishery/Traditional Fishery. Ecological Complexity, 7, 13-20.
https://doi.org/10.1016/j.ecocom.2009.03.005
[21]  Wang, L., Li, M., Pei, X. and Zhang, J. (2022) Optimal Breeding Strategy for Livestock with a Dynamic Price. Mathematics, 10, Article 1732.
https://doi.org/10.3390/math10101732
[22]  陈雅, 李明涛, 裴鑫, 柴玉珍. 基于动态价格下的家畜养殖模型及其分析[J]. 应用数学进展, 2022, 11(7): 4480-4495.
https://doi.org/10.12677/aam.2022.117475
[23]  Bairagi, N., Chaudhuri, S. and Chattopadhyay, J. (2009) Harvesting as a Disease Control Measure in an Eco-Epidemiological System—A Theoretical Study. Mathematical Biosciences, 217, 134-144.
https://doi.org/10.1016/j.mbs.2008.11.002
[24]  van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29-48.
https://doi.org/10.1016/s0025-5564(02)00108-6
[25]  Diekmann, O., Heesterbeek, J.A.P. and Roberts, M.G. (2009) The Construction of Next-Generation Matrices for Compartmental Epidemic Models. Journal of the Royal Society Interface, 7, 873-885.
https://doi.org/10.1098/rsif.2009.0386
[26]  NBSPRC (2023) China Statistical Yearbook-2023. China Statistics Press.
[27]  国家发展和改革委员会价格司, 国家发展和改革委员会价格成本和认证中心. 全国农产品成本收益资料汇编[M]. 北京: 中国统计出版社, 2024.
[28]  国家疾病预防控制局. 2023年全国法定传染病疫情概况[EB/OL].
https://www.ndcpa.gov.cn/, 2024-12-26.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133