|
Adam优化算法在实际应用中的效能探究
|
Abstract:
本文探讨了Adam优化算法在实际应用中的性能表现。Adam算法结合了动量和自适应学习率调整机制,具有高效、稳定和适应性强的特点。在深度学习、自然语言处理、推荐系统和强化学习等多个领域,Adam算法均展现出卓越的性能。通过对比实验,我们发现Adam算法在收敛速度、准确性和稳定性方面均优于传统的随机梯度下降(SGD)算法。特别是在处理大规模数据集和高维参数空间时,Adam算法的优势更加明显。此外,Adam算法还具有良好的泛化能力,能够适应不同规模和复杂度的任务。因此,Adam优化算法在实际应用中具有广泛的应用前景和重要的研究价值。未来,我们将继续探索Adam算法的改进版本,以进一步提高其在各种任务中的性能表现。
This paper explores the performance of the Adam optimization algorithm in real applications. The Adam algorithm combines momentum and adaptive learning rate adjustment mechanisms, and is characterized by high efficiency, stability and adaptability. The Adam algorithm shows excellent performance in many fields such as deep learning, natural language processing, recommender systems and reinforcement learning. Through comparative experiments, we find that the Adam algorithm outperforms the traditional stochastic gradient descent (SGD) algorithm in terms of convergence speed, accuracy and stability. Especially when dealing with large-scale datasets and high-dimensional parameter spaces, the advantages of Adam’s algorithm are more obvious. In addition, the Adam algorithm has good generalization ability and can adapt to tasks of different sizes and complexities. Therefore, Adam optimization algorithm has a wide range of application prospects and important research value in practical applications. In the future, we will continue to explore improved versions of Adam’s algorithm to further improve its performance in various tasks.
[1] | Diederik, P. and Jimmy, B. (2014) Adam: A Method for Stochastic Optimization. 1-10. arXiv:1412.6980. |
[2] | 张天中. 基于Adam自适应学习率的神经网络训练方法[J]. 信息与电脑(理论版), 2024, 36(6): 44-46. |
[3] | 陶蔚, 陇盛, 刘鑫, 等. 深度学习步长自适应动量优化方法研究综述[J]. 小型微型计算机系统, 2025, 46(2): 257-265. |
[4] | 田嘉武. 深度学习中的一阶优化算法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2024. |
[5] | 姜文翰, 姜志侠, 孙雪莲. 一种修正学习率的梯度下降算法[J]. 长春理工大学学报(自然科学版), 2023, 46(6): 112-120. |
[6] | 孙玉钰, 张金状, 闫贺旗. 深度学习优化算法在实际预测中的应用[J]. 信息记录材料, 2024, 25(11): 127-129. |
[7] | Reyad, M., Sarhan, A. and Arafa, M. (2023) A Modified Adam Algorithm for Deep Neural Network Optimization. Neural Computing and Applications, 35, 17095-17112. https://doi.org/10.1007/s00521-023-08568-z |