全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于广义矩量法的自适应套索惩罚线性混合模型用于高维多组学数据的预测分析
An Adaptive Lasso Penalized Linear Mixed Model with Generalized Method of Moments for Prediction Analysis on High-Dimensional Multi-Omics Data

DOI: 10.12677/aam.2025.144206, PP. 783-797

Keywords: 自适应Lasso,惩罚线性混合模型,广义矩法,高维数据,风险预测
Adaptive Lasso
, Penalized Linear Mixed Models, Generalized Method of Moments, High-Dimensional Data, Risk Prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

在现代精准医学的探索中,对疾病风险的准确预测至关重要。高维多组学数据为此类预测研究提供了前所未有的资源,但其高维性和复杂的内部关系给分析带来了重大挑战。我们提出了一种基于广义矩估计框架方法(MpLMMGMM-AL)的自适应Lasso惩罚线性混合模型,用于使用高维多组学数据预测表型。我们的方法采用自适应Lasso作为惩罚函数,利用随机效应部分的核函数捕获不同组学数据层的各种类型的预测效应,并有效地选择预测组学区域及其相应的效应。通过大量的仿真,我们证明了MpLMMGMM-AL可以同时考虑大量变量,并有效地从各自的组学层中选择具有预测能力的变量。将该方法应用于公开数据集TCGA中的乳腺癌数据,并与MpLMMGMM进行了性能比较。
In the exploration of modern precision medicine, an accurate prediction of the disease risk is crucial. For such predictive research, high-dimensional multi-omics data provide unprecedented resources, however, their high dimensionality and intricate internal relationships pose significant analytical challenges. We propose an adaptive Lasso penalized linear mixed model under a generalized method of moments estimation framework (MpLMMGMM-AL) for predicting phenotypes using high-dimensional multi-omics data. Our approach employs adaptive Lasso as the penalty function, utilizes kernel functions in the random effects part to capture various types of predictive effects across different omics data layers, and effectively selects predictive omic regions and their corresponding effects. Through extensive simulations, we demonstrate that MpLMMGMM-AL can simultaneously consider a large number of variables and effectively choose variables with predictive power from their respective omics layers. Our method is applied on a breast cancer data from the publicly available dataset TCGA, and the performance is compared with MpLMMGMM.

References

[1]  Boekel, J., Chilton, J.M., Cooke, I.R., Horvatovich, P.L., Jagtap, P.D., Käll, L., et al. (2015) Multi-Omic Data Analysis Using Galaxy. Nature Biotechnology, 33, 137-139.
https://doi.org/10.1038/nbt.3134
[2]  Morris, J.S. and Baladandayuthapani, V. (2017) Statistical Contributions to Bioinformatics: Design, Modelling, Structure Learning and Integration. Statistical Modelling, 17, 245-289.
https://doi.org/10.1177/1471082x17698255
[3]  Kirchner, H., Osler, M.E., Krook, A. and Zierath, J.R. (2013) Epigenetic Flexibility in Metabolic Regulation: Disease Cause and Prevention? Trends in Cell Biology, 23, 203-209.
https://doi.org/10.1016/j.tcb.2012.11.008
[4]  Speed, D. and Balding, D.J. (2014) MultiBLUP: Improved SNP-Based Prediction for Complex Traits. Genome Research, 24, 1550-1557.
https://doi.org/10.1101/gr.169375.113
[5]  Weissbrod, O., Geiger, D. and Rosset, S. (2016) Multikernel Linear Mixed Models for Complex Phenotype Prediction. Genome Research, 26, 969-979.
https://doi.org/10.1101/gr.201996.115
[6]  Harris, B.L., Johnson, D.L. and Spelman, R.J. (2009) Genomic Selection in New Zealand and the Implications for National Genetic Evaluation. Proceedings ICAR 36th Session, Niagara, 16-20 June 2009, 325-330.
[7]  Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., et al. (2010) Common SNPs Explain a Large Proportion of the Heritability for Human Height. Nature Genetics, 42, 565-569.
https://doi.org/10.1038/ng.608
[8]  Wang, X. and Wen, Y. (2021) A Penalized Linear Mixed Model with Generalized Method of Moments for Complex Phenotype Prediction. Bioinformatics, 38, 5222-5228.
https://doi.org/10.1093/bioinformatics/btac659
[9]  Li, J., Lu, Q. and Wen, Y. (2019) Multi-Kernel Linear Mixed Model with Adaptive Lasso for Prediction Analysis on High-Dimensional Multi-Omics Data. Bioinformatics, 36, 1785-1794.
https://doi.org/10.1093/bioinformatics/btz822
[10]  Wang, X. and Wen, Y. (2022) A Penalized Linear Mixed Model with Generalized Method of Moments for Prediction Analysis on High-Dimensional Multi-Omics Data. Briefings in Bioinformatics, 23, bbac193.
https://doi.org/10.1093/bib/bbac193
[11]  Hai, Y. and Wen, Y. (2020) A Bayesian Linear Mixed Model for Prediction of Complex Traits. Bioinformatics, 36, 5415-5423.
https://doi.org/10.1093/bioinformatics/btaa1023
[12]  Hai, Y., Ma, J., Yang, K. and Wen, Y. (2023) Bayesian Linear Mixed Model with Multiple Random Effects for Prediction Analysis on High-Dimensional Multi-Omics Data. Bioinformatics, 39, btad647.
https://doi.org/10.1093/bioinformatics/btad647
[13]  VanRaden, P.M. (2008) Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science, 91, 4414-4423.
https://doi.org/10.3168/jds.2007-0980
[14]  Allred, D.C., Harvey, J.M., Berardo, M. and Clark, G.M. (1998) Prognostic and Predictive Factors in Breast Cancer by Immunohistochemical Analysis. Modern Pathology, 11, 155-168.
[15]  Chalise, P., Raghavan, R. and Fridley, B.L. (2016) InterSIM: Simulation Tool for Multiple Integrative ‘Omic Datasets’. Computer Methods and Programs in Biomedicine, 128, 69-74.
https://doi.org/10.1016/j.cmpb.2016.02.011
[16]  The 1000 Genomes Project Consortium (2015) A Global Reference for Human Genetic Variation. Nature, 526, 68-74.
https://doi.org/10.1038/nature15393
[17]  Wen, Y. and Lu, Q. (2020) Multikernel Linear Mixed Model with Adaptive Lasso for Complex Phenotype Prediction. Statistics in Medicine, 39, 1311-1327.
https://doi.org/10.1002/sim.8477
[18]  Nadji, M., Gomez-Fernandez, C., Ganjei-Azar, P. and Morales, A.R. (2005) Immunohistochemistry of Estrogen and Progesterone Receptors Reconsidered: Experience with 5993 Breast Cancers. American Journal of Clinical Pathology, 123, 21-27.
https://doi.org/10.1309/4wv79n2ghj3x1841
[19]  Breast Cancer Association Consortium (2021) Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. New England Journal of Medicine, 384, 428-439.
https://doi.org/10.1056/nejmoa1913948
[20]  Banerjee, S., Sengupta, A., Ghosh, S.K. and Banerjee, R. (2024) CDH1 Gene as Biomarker Towards Breast Cancer Prediction. Journal of Biomolecular Structure and Dynamics.
https://doi.org/10.1080/07391102.2024.2316770

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133