全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

温度和时间对富氟流体中Zr高温高压水解行为的影响
The Influence of Temperature and Time on the High-Temperature and High-Pressure Hydrolysis Behavior of Zr in Fluorine Rich Fluids

DOI: 10.12677/ag.2025.154053, PP. 525-537

Keywords: 氟锆络合物,水解反应,热液体系
Fluorine Zirconium Complex
, Hydrolysis Reaction, Hydrothermal System

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前已经有大量的实验研究得到了Zr矿物在热液中的一些行为以及热力学数据,但是由于使用络合物水解法进行研究的人较少,且研究范围较为局限,且因为数据过少而无法确认其数据的准确性,因此为了更全面地了解Zr的流体迁移能力,同时验证前人的实验数据,本研究使用富氟络合物水解和热力学模拟计算相结合的方法对Zr流体活动性进行研究,通过高温高压实验,探究热液体系中富氟的锆络合物水解行为的问题。实验结果显示,在150℃~500℃之间,随着温度的升高水解率逐渐升高,当温度达到500℃时水解率已经达到了90%以上,并获得了实验条件下的Zr-F络合物的累积水解平衡常数。该实验可帮助解释富F流体的出现可能是造成伟晶岩锆石具有异常低Zr/Hf的原因。并且该实验结果也可为验证Zr-F络合物的水解数据提供帮助。
At present, a large number of experimental studies have obtained some behaviors and thermodynamic data of Zr minerals in hydrothermal solutions. However, due to the limited number of researchers using complex hydrolysis method and the limited scope of research, and the lack of data, the accuracy of the data cannot be confirmed. Therefore, in order to comprehensively understand the fluid migration ability of Zr and verify previous experimental data, this study uses a combination of fluoride rich complex hydrolysis and thermodynamic simulation calculation to study the fluid activity of Zr. Through high-temperature and high-pressure experiments, the problem of fluoride rich zirconium complex hydrolysis behavior in hydrothermal systems is explored. The experimental results showed that the hydrolysis rate gradually increased with the increase of temperature between 150?C~500?C. When the temperature reached 500?C, the hydrolysis rate had already reached over 90%, and the cumulative hydrolysis equilibrium constant of Zr-F complex under experimental conditions was obtained. This experiment can help explain why the occurrence of F-rich fluids may be the reason for the abnormally low Zr/Hf content of zircon in pegmatite. The experimental results can also provide assistance in verifying the hydrolysis data of Zr-F complexes.

References

[1]  Perks, C. and Mudd, G. (2019) Titanium, Zirconium Resources and Production: A State of the Art Literature Review. Ore Geology Reviews, 107, 629-646.
https://doi.org/10.1016/j.oregeorev.2019.02.025
[2]  张继豪. β相水淬锆和锆合金的微结构及耐腐蚀性研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023.
[3]  Manicone, P.F., Rossi Iommetti, P. and Raffaelli, L. (2007) An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. Journal of Dentistry, 35, 819-826.
https://doi.org/10.1016/j.jdent.2007.07.008
[4]  Birkby, I. and Stevens, R. (1996) Applications of Zirconia Ceramics. Key Engineering Materials, 122, 527-552.
https://doi.org/10.4028/www.scientific.net/kem.122-124.527
[5]  王秋皓. 锆石浮选组合捕收剂作用机理及应用[D]: [硕士学位论文]. 长沙: 中南大学, 2023.
[6]  Pupin, J.P. (1980) Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73, 207-220.
https://doi.org/10.1007/bf00381441
[7]  Hoskin, P.W.O. (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62.
https://doi.org/10.2113/0530027
[8]  Schaltegger, U., Pettke, T., Audétat, A., Reusser, E. and Heinrich, C.A. (2005) Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia) Part I: Crystallization of zircon and REE-Phosphates over Three Million Years—A Geochemical and U-Pb Geochronological Study. Chemical Geology, 220, 215-235.
https://doi.org/10.1016/j.chemgeo.2005.02.018
[9]  Bernini, D., Audétat, A., Dolejš, D. and Keppler, H. (2013) Zircon Solubility in Aqueous Fluids at High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 119, 178-187.
https://doi.org/10.1016/j.gca.2013.05.018
[10]  Shikina, N.D., Vasina, O.N., Gurova, E.V., Popova, E.S., Tagirov, B.R., Shazzo, Y.K., et al. (2013) Experimental Study of ZrO2(c) Solubility in Water and Aqueous Perchloric Acid Solutions at 150 and 250˚C. Geochemistry International, 52, 82-87.
https://doi.org/10.1134/s0016702914010078
[11]  Tropper, P. (2005) Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones. American Mineralogist, 90, 502-505.
https://doi.org/10.2138/am.2005.1806
[12]  Zack, T. and John, T. (2007) An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239, 199-216.
https://doi.org/10.1016/j.chemgeo.2006.10.020
[13]  Brenan, J.M., Shaw, H.F., Phinney, D.L. and Ryerson, F.J. (1994) Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for High Field Strength Element Depletions in Island-Arc Basalts. Earth and Planetary Science Letters, 128, 327-339.
https://doi.org/10.1016/0012-821x(94)90154-6
[14]  Gaetani, G.A., Asimow, P.D. and Stolper, E.M. (2008) A Model for Rutile Saturation in Silicate Melts with Applications to Eclogite Partial Melting in Subduction Zones and Mantle Plumes. Earth and Planetary Science Letters, 272, 720-729.
https://doi.org/10.1016/j.epsl.2008.06.002
[15]  McNaughton, N.J., Mueller, A.G. and Groves, D.I. (2005) The Age of the Giant Golden Mile Deposit, Kalgoorlie, Western Australia: Ion-Microprobe Zircon and Monazite U-Pb Geochronology of a Synmineralization Lamprophyre Dike. Economic Geology, 100, 1427-1440.
https://doi.org/10.2113/gsecongeo.100.7.1427
[16]  Giere, R. (1986) Zirconolite, Allanite and Hoegbomite in a Marble Skarn from the Bergell Contact Aureole: Implications for Mobility of Ti, Zr and REE. Contributions to Mineralogy and Petrology, 93, 459-470.
https://doi.org/10.1007/bf00371716
[17]  Gieré, R. (1990) Hydrothermal Mobility of Ti, Zr and REE: Examples from the Bergell and Adamello Contact Aureoles (Italy). Terra Nova, 2, 60-67.
https://doi.org/10.1111/j.1365-3121.1990.tb00037.x
[18]  Claoue-Long, J.C., King, R.W. and Kerrich, R. (1990) Archaean Hydrothermal Zircon in the Abitibi Greenstone Belt: Constraints on the Timing of Gold Mineralisation. Earth and Planetary Science Letters, 98, 109-128.
https://doi.org/10.1016/0012-821x(90)90091-b
[19]  Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., et al. (2004) U-Pb Dating of Serpentinization: Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland). Chemical Geology, 203, 183-203.
https://doi.org/10.1016/j.chemgeo.2003.10.005
[20]  Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2005) Magmatic-to-Hydrthermal Crystallization in the W–-Sn Mineralized Mole Granite (NSW, Australia) Part II: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220, 191-213.
https://doi.org/10.1016/j.chemgeo.2005.02.017
[21]  Kebede, T., Horie, K., Hidaka, H. and Terada, K. (2007) Zircon ‘Mcrovein’ in Peralkaline Granitic Gneiss, Western Ethiopia: Origin, SHRIMP U-Pb Geochronology and Trace Element Investigations. Chemical Geology, 242, 76-102.
https://doi.org/10.1016/j.chemgeo.2007.03.014
[22]  de Hoog, J.C.M. and van Bergen, M.J. (2000) Volatile-Induced Transport of HFSE, REE, Th and U in Arc Magmas: Evidence from Zirconolite-Bearing Vesicles in Potassic Lavas of Lewotolo Volcano (Indonesia). Contributions to Mineralogy and Petrology, 139, 485-502.
https://doi.org/10.1007/s004100000146
[23]  Schaltegger, U. (2007) Hydrothermal Zircon. Elements, 3, 51-79.
https://doi.org/10.2113/gselements.3.1.51
[24]  肖益林, 黄建, 刘磊, 等. 金红石: 重要的地球化学“信息库” [J]. 岩石学报, 2011, 27(2): 398-416.
[25]  Gao, J., John, T., Klemd, R. and Xiong, X. (2007) Mobilization of Ti-Nb-Ta during Subduction: Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71, 4974-4996.
https://doi.org/10.1016/j.gca.2007.07.027
[26]  Rapp, J.F., Klemme, S., Butler, I.B. and Harley, S.L. (2010) Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids: An Experimental Investigation. Geology, 38, 323-326.
https://doi.org/10.1130/g30753.1
[27]  Kessel, R., Schmidt, M.W., Ulmer, P. and Pettke, T. (2005) Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437, 724-727.
https://doi.org/10.1038/nature03971
[28]  Li, W. and Ni, H. (2020) Dehydration at Subduction Zones and the Geochemistry of Slab Fluids. Science China Earth Sciences, 63, 1925-1937.
https://doi.org/10.1007/s11430-019-9655-1
[29]  Ni, H., Zhang, L., Xiong, X., Mao, Z. and Wang, J. (2017) Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicochemical Properties. Earth-Science Reviews, 167, 62-71.
https://doi.org/10.1016/j.earscirev.2017.02.006
[30]  Chen, W., Zhang, G., Ruan, M., Wang, S. and Xiong, X. (2021) Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research: Solid Earth, 126, e2020JB020708.
https://doi.org/10.1029/2020jb020708
[31]  Manning, C. (2004) The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223, 1-16.
https://doi.org/10.1016/j.epsl.2004.04.030
[32]  Bureau, H. (1999) Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 165, 187-196.
https://doi.org/10.1016/s0012-821x(98)00266-0
[33]  Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K.N. and Ono, S. (2012) Separation of Supercritical Slab-Fluids to Form Aqueous Fluid and Melt Components in Subduction Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 109, 18695-18700.
https://doi.org/10.1073/pnas.1207687109
[34]  Mibe, K., Chou, I. and Bassett, W.A. (2008) In Situ Raman Spectroscopic Investigation of the Structure of Subduction‐zone Fluids. Journal of Geophysical Research: Solid Earth, 113, B04208.
https://doi.org/10.1029/2007jb005179
[35]  Shen, A.H. and Keppler, H. (1997) Direct Observation of Complete Miscibility in the Albite-H2O System. Nature, 385, 710-712.
https://doi.org/10.1038/385710a0
[36]  Zhang, Z., Shen, K., Sun, W., Liu, Y., Liou, J.G., Shi, C., et al. (2008) Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72, 3200-3228.
https://doi.org/10.1016/j.gca.2008.04.014
[37]  Ferrando, S., Frezzotti, M.L., Dallai, L. and Compagnoni, R. (2005) Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223, 68-81.
https://doi.org/10.1016/j.chemgeo.2005.01.029
[38]  Zheng, Y. and Hermann, J. (2014) Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66, Article No. 93.
https://doi.org/10.1186/1880-5981-66-93
[39]  Ayers, J.C., Zhang, L., Luo, Y. and Peters, T.J. (2012) Zircon Solubility in Alkaline Aqueous Fluids at Upper Crustal Conditions. Geochimica et Cosmochimica Acta, 96, 18-28.
https://doi.org/10.1016/j.gca.2012.08.027
[40]  Mysen, B. (2015) An in Situ Experimental Study of Zr4+ Transport Capacity of Water-Rich Fluids in the Temperature and Pressure Range of the Deep Crust and Upper Mantle. Progress in Earth and Planetary Science, 2, Article No. 38.
https://doi.org/10.1186/s40645-015-0070-5
[41]  Ryzhenko, B.N., Kovalenko, N.I., Prisyagina, N.I., Starshinova, N.P. and Krupskaya, V.V. (2008) Experimental Determination of Zirconium Speciation in Hydrothermal Solutions. Geochemistry International, 46, 328-339.
https://doi.org/10.1134/s0016702908040022
[42]  Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V. and Salvi, S. (2011) An Experimental Study of the Solubility of Baddeleyite (ZrO2) in Fluoride-Bearing Solutions at Elevated Temperature. Geochimica et Cosmochimica Acta, 75, 7426-7434.
https://doi.org/10.1016/j.gca.2011.09.043
[43]  何俊杰. 热液体系中高场强元素富氟络合物的水解行为及活动性规律[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018.
[44]  何俊杰, 丁兴, 王玉荣, 等. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义[J]. 岩石学报, 2015, 31(7): 1870-1878.
[45]  何俊杰, 丁兴, 王玉荣, 等. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约 [J]. 岩石学报, 2015, 31(3): 802-810.
[46]  丁兴, 何俊杰, 刘灼瑜. 热液条件下锐钛矿晶体生长的实验[J]. 地球科学, 2018, 43(5): 1763-1772.
[47]  Yan, H., He, J., Liu, X., Wang, H., Liu, J. and Ding, X. (2020) Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15-773.15 K and 100 MPA. Journal of Solution Chemistry, 49, 836-848.
https://doi.org/10.1007/s10953-020-00993-1
[48]  Yan, H., Ding, X., Liu, J., Tu, X., Sun, W. and Chou, I. (2024) Osmium Transport and Enrichment from the Lithosphere to the Hydrosphere: New Perspectives from Hydrothermal Experiments and Geochemical Modeling. Journal of Geophysical Research: Solid Earth, 129, e2023JB028261.
https://doi.org/10.1029/2023jb028261
[49]  Helgeson, H.C. and Kirkham, D.H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures; II, Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. American Journal of Science, 274, 1199-1261.
https://doi.org/10.2475/ajs.274.10.1199
[50]  Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 Degrees C and 5kb. American Journal of Science, 281, 1249-1516.
https://doi.org/10.2475/ajs.281.10.1249
[51]  Tanger, J.C. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes. American Journal of Science, 288, 19-98.
https://doi.org/10.2475/ajs.288.1.19
[52]  Rubin, J.N., Henry, C.D. and Price, J.G. (1993) The Mobility of Zirconium and Other “Immobile” Elements during Hydrothermal Alteration. Chemical Geology, 110, 29-47.
https://doi.org/10.1016/0009-2541(93)90246-f
[53]  Salvi, S. and Williams-Jones, A.E. (1996) The Role of Hydrothermal Processes in Concentrating High-Field Strength Elements in the Strange Lake Peralkaline Complex, Northeastern Canada. Geochimica et Cosmochimica Acta, 60, 1917-1932.
https://doi.org/10.1016/0016-7037(96)00071-3
[54]  London, D., Hervig, R.L. and Morgan, G.B. (1988) Melt-Vapor Solubilities and Elemental Partitioning in Peraluminous Granite-Pegmatite Systems: Experimental Results with Macusani Glass at 200 MPa. Contributions to Mineralogy and Petrology, 99, 360-373.
https://doi.org/10.1007/bf00375368
[55]  Dolejs, D. and Baker, D.R. (2007) Liquidus Equilibria in the System K2O-Na2O-Al2O3-SiO2-F2O-1-H2O to 100 MPa: II. Differentiation Paths of Fluorosilicic Magmas in Hydrous Systems. Journal of Petrology, 48, 807-828.
https://doi.org/10.1093/petrology/egm002
[56]  Webster, J.D. (1990) Partitioning of F between H2O and CO2 Fluids and Topaz Rhyolite Melt: Implications for Mineralizing Magmatic-Hydrothermal Fluids in F-Rich Granitic Systems. Contributions to Mineralogy and Petrology, 104, 424-438.
https://doi.org/10.1007/bf01575620
[57]  Carroll, M.R. and Webster, J.D. (1994) Chapter 7. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. In: Wallace, P. and Anderson Jr., A.T., Eds., Volatiles in Magmas, De Gruyter, 231-280.
https://doi.org/10.1515/9781501509674-013
[58]  Manning, D.A.C. (1981) The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology, 76, 206-215.
https://doi.org/10.1007/bf00371960
[59]  Dostal, J. and Chatterjee, A.K. (2000) Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163, 207-218.
https://doi.org/10.1016/s0009-2541(99)00113-8
[60]  Hanson, S.L., Simmons, W.B. and Falster, A.U. (1998) Nb-Ta-Ti Oxides in Granitic Pegmatites from the Topsham Pegmatite District, Southern Maine. Canadian Mineralogist, 36, 601-608.
[61]  李洁, 黄小龙. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J]. 岩石学报, 2013, 29(12): 4311-4322.
[62]  Faithfull, J.W., Dempster, T.J., MacDonald, J.M. and Reilly, M. (2018) Metasomatism and the Crystallization of Zircon Megacrysts in Archaean Peridotites from the Lewisian Complex, NW Scotland. Contributions to Mineralogy and Petrology, 173, Article No. 99.
https://doi.org/10.1007/s00410-018-1527-5
[63]  Li, H., Chen, R., Zheng, Y. and Hu, Z. (2016) The Crust‐Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 121, 687-712.
https://doi.org/10.1002/2015jb012231
[64]  Chen, W., Xiong, X., Wang, J., Xue, S., Li, L., Liu, X., et al. (2018) TiO2 Solubility and Nb and Ta Partitioning in Rutile‐silica‐Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123, 4765-4782.
https://doi.org/10.1029/2018jb015808
[65]  Kalfoun, F., Ionov, D. and Merlet, C. (2002) HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites. Earth and Planetary Science Letters, 199, 49-65.
https://doi.org/10.1016/s0012-821x(02)00555-1
[66]  Malaspina, N., Hermann, J., Scambelluri, M. and Compagnoni, R. (2006) Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249, 173-187.
https://doi.org/10.1016/j.epsl.2006.07.017
[67]  Louvel, M., Sanchez-Valle, C., Malfait, W.J., Cardon, H., Testemale, D. and Hazemann, J. (2014) Constraints on the Mobilization of Zr in Magmatic-Hydrothermal Processes in Subduction Zones from in Situ Fluid-Melt Partitioning Experiments. American Mineralogist, 99, 1616-1625.
https://doi.org/10.2138/am.2014.4799

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133