|
Material Sciences 2025
缺陷Bi2O2CO3光催化剂的制备及应用于增强光催化CO2还原研究
|
Abstract:
通过水热法制备合成了含有缺陷的Bi2O2CO3,通过X射线粉末衍射和扫描电子显微镜确定其物相组成和形貌,通过电子顺磁共振检测到了氧空位的信号,证明了缺陷体系的成功构筑。将缺陷Bi2O2CO3用于光催化CO2还原,在模拟太阳光照射下光催化CO2还原产物CO的产率达到39.65 μmol·g?1·h?1,其催化效率是纯Bi2O2CO3的6.5倍。通过紫外漫反射光谱证明缺陷能够引起能带结构变化,使Bi2O2CO3禁带宽度变窄,实现可见光吸收和更高的载流子分离效率。通过系列光电化学实验、荧光光谱测试结果表明,氧空缺的存在可以提高材料产生光生电荷的能力,提高光生电子在材料表面的迁移速率,并抑制光生电子与空穴的复合,使参与反应的有效电荷增加,从而增强材料光催化还原CO2的能力。
Defective Bi2O2CO3 was synthesized via a hydrothermal method. The phase composition and morphology of the material were confirmed by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The presence of oxygen vacancies in the defect system was verified through electron paramagnetic resonance (EPR) spectroscopy, confirming the successful construction of the defective structure. When applied to photocatalytic CO2 reduction under simulated sunlight irradiation, the defective Bi2O2CO3 exhibited a CO production rate of 39.65 μmol·g?1·h?1, which is 6.5 times higher than that of pristine Bi2O2CO3. Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) revealed that the defects induced modifications in the band structure, narrowing the bandgap of Bi2O2CO3. This narrowing enhanced visible light absorption and improved charge carrier separation efficiency. A series of photoelectrochemical experiments and photoluminescence (PL) spectroscopy further demonstrated that the presence of oxygen vacancies can enhance a material’s ability to generate photogenerated charges, improve the migration rate of photogenerated electrons on the material surface, and suppress the recombination of photogenerated electrons and holes. This increases the number of effective charge carriers participating in reactions, thereby strengthening the material’s capability for photocatalytic reduction of CO2.
[1] | Du, Y., Jie, G., Jia, H., Liu, J., Wu, J., Fu, Y., et al. (2023) Visible-Light-Induced Photocatalytic CO2 Reduction over Zirconium Metal Organic Frameworks Modified with Different Functional Groups. Journal of Environmental Sciences, 132, 22-30. https://doi.org/10.1016/j.jes.2022.10.037 |
[2] | Wang, W., Zhang, W., Deng, C., Sheng, H. and Zhao, J. (2024) Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angewandte Chemie International Edition, 63, e202317969. https://doi.org/10.1002/anie.202317969 |
[3] | Guaraldo, T.T., Vakili, R., Wenk, J. and Mattia, D. (2023) Highly Efficient ZnO Photocatalytic Foam Reactors for Micropollutant Degradation. Chemical Engineering Journal, 455, Article ID: 140784. https://doi.org/10.1016/j.cej.2022.140784 |
[4] | Rueda-Marquez, J.J., Levchuk, I., Fernández Ibañez, P. and Sillanpää, M. (2020) A Critical Review on Application of Photocatalysis for Toxicity Reduction of Real Wastewaters. Journal of Cleaner Production, 258, Article ID: 120694. https://doi.org/10.1016/j.jclepro.2020.120694 |
[5] | Li, X., Li, L., Chen, G., Chu, X., Liu, X., Naisa, C., et al. (2023) Accessing Parity-Forbidden D-D Transitions for Photocatalytic CO2 Reduction Driven by Infrared Light. Nature Communications, 14, Article No. 4034. https://doi.org/10.1038/s41467-023-39666-0 |
[6] | Tian, N., Hu, C., Wang, J., Zhang, Y., Ma, T. and Huang, H. (2022) Layered Bismuth-Based Photocatalysts. Coordination Chemistry Reviews, 463, Article ID: 214515. https://doi.org/10.1016/j.ccr.2022.214515 |
[7] | Xu, K., Wang, L., Xu, X., Dou, S.X., Hao, W. and Du, Y. (2019) Two Dimensional Bismuth-Based Layered Materials for Energy-Related Applications. Energy Storage Materials, 19, 446-463. https://doi.org/10.1016/j.ensm.2019.03.021 |
[8] | Shen, J., Barnard, J.P. and Wang, H. (2024) A New Class of Single-Phase Multiferroics: Bismuth-Based Layered Supercell Oxide Thin Films—Current Progress and Future Perspectives. APL Materials, 12, Article ID: 040601. https://doi.org/10.1063/5.0201790 |
[9] | Han, M., Qian, Y., Li, X., Wang, N., Song, T., Liu, L., et al. (2023) Ni-Doped Bi2O2CO3 Nanosheet with H+/Zn2+ Co-Insertion for “Rocking Chair” Zinc-Ion Battery. Journal of Colloid and Interface Science, 645, 483-492. https://doi.org/10.1016/j.jcis.2023.04.121 |
[10] | Zhu, C., Liu, Q., Yan, H., Zhang, W. and Chen, R. (2024) Sulfur‐Doped Bi2O2CO3 Nanosheet for Enhanced Visible‐Light‐Driven Photocatalytic Co2 Reduction to CO with Ultra‐High Selectivity. ChemSusChem, 18, e202401054. https://doi.org/10.1002/cssc.202401054 |
[11] | Guan, M., Xiao, C., Zhang, J., Fan, S., An, R., Cheng, Q., et al. (2013) Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. Journal of the American Chemical Society, 135, 10411-10417. https://doi.org/10.1021/ja402956f |
[12] | Di, J., Zhu, C., Ji, M., Duan, M., Long, R., Yan, C., et al. (2018) Defect‐Rich Bi12O17Cl2 Nanotubes Self‐Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction. Angewandte Chemie International Edition, 57, 14847-14851. https://doi.org/10.1002/anie.201809492 |
[13] | Chen, F., Ma, Z., Ye, L., Ma, T., Zhang, T., Zhang, Y., et al. (2020) Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO2 Photoreduction on BiOIO3 Single Crystals. Advanced Materials, 32, e1908350. https://doi.org/10.1002/adma.201908350 |
[14] | Feng, Y., Zhang, Z., Zhao, K., Lin, S., Li, H. and Gao, X. (2021) Photocatalytic Nitrogen Fixation: Oxygen Vacancy Modified Novel Micro-Nanosheet Structure Bi2O2CO3 with Band Gap Engineering. Journal of Colloid and Interface Science, 583, 499-509. https://doi.org/10.1016/j.jcis.2020.09.089 |
[15] | Liu, B., Zhang, K., Wei, S., Zhang, Y., Liu, G., Wu, L., et al. (2024) Oxygen Vacancy-Rich H-TiO2/Pt with Enhanced Interfacial Hydrogen Spillover Effect for Wide pH Range Hydrogen Evolution. Fuel, 376, Article ID: 132693. https://doi.org/10.1016/j.fuel.2024.132693 |
[16] | Li, Y., Wen, M., Wang, Y., Tian, G., Wang, C. and Zhao, J. (2020) Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light‐Driven Catalytic CO2 Reduction on Bi2O2CO3. Angewandte Chemie International Edition, 60, 910-916. https://doi.org/10.1002/anie.202010156 |
[17] | Zu, X., Zhao, Y., Li, X., Chen, R., Shao, W., Wang, Z., et al. (2021) Ultrastable and Efficient Visible‐Light‐Driven CO2 Reduction Triggered by Regenerative Oxygen‐Vacancies in Bi2O2CO3 Nanosheets. Angewandte Chemie International Edition, 60, 13840-13846. https://doi.org/10.1002/anie.202101894 |
[18] | Fan, L., An, Z., Xiao, Q., Guo, X. and Jin, Z. (2025) Enhanced Charge Transfer through Defect and Doping Synergistic Engineering for Efficient Hydrogen Production. Applied Catalysis B: Environment and Energy, 363, Article ID: 124821. https://doi.org/10.1016/j.apcatb.2024.124821 |
[19] | Yang, X., Wang, S., Yang, N., Zhou, W., Wang, P., Jiang, K., et al. (2019) Oxygen Vacancies Induced Special CO2 Adsorption Modes on Bi2MOO6 for Highly Selective Conversion to CH4. Applied Catalysis B: Environmental, 259, Article ID: 118088. https://doi.org/10.1016/j.apcatb.2019.118088 |
[20] | Chen, C., Ma, J., Yi, Z., Wang, S., Gao, H., Wang, Y., et al. (2023) Highly-Efficient and Recyclable Bi2O2CO3 Adsorbent Achieved by Surfactant Modification and Its Application in Pollutant Removal. Materials Research Bulletin, 159, Article ID: 112091. https://doi.org/10.1016/j.materresbull.2022.112091 |
[21] | Shi, X., Dai, W., Dong, X., Ren, Q., Yan, P. and Dong, F. (2023) Tensile Stress Enhanced Dynamic Oxygen Vacancies on Interlayer Stretched Bi2o2co3 as Pivotal Knobs to Promote Sustainable Selective CO2 Photoreduction. Journal of Energy Chemistry, 83, 173-179. https://doi.org/10.1016/j.jechem.2023.04.022 |
[22] | Zhu, T., Yang, J., Liang, J., Li, Z., Shen, Y., Yu, Z., et al. (2023) Sn (ⅳ)-Doping Induced Higher Lattice Strain and Activated More Lattice Oxygen in the Bi2O2CO3 for Boosting Photocatalytic Activity: Experimental and Theoratical Calculation Study. Separation and Purification Technology, 309, Article ID: 122963. https://doi.org/10.1016/j.seppur.2022.122963 |
[23] | Liu, Y., Wang, G., Dong, J., An, Y., Huang, B., Qin, X., et al. (2016) A Bismuth Based Layer Structured Organic-Inorganic Hybrid Material with Enhanced Photocatalytic Activity. Journal of Colloid and Interface Science, 469, 231-236. https://doi.org/10.1016/j.jcis.2016.02.010 |
[24] | Ma, H., He, Y., Chen, P., Wang, H., Sun, Y., Li, J., et al. (2021) Ultrathin Two-Dimensional Bi-Based Photocatalysts: Synthetic Strategies, Surface Defects, and Reaction Mechanisms. Chemical Engineering Journal, 417, Article ID: 129305. https://doi.org/10.1016/j.cej.2021.129305 |