全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非厄米系统虚时演化的量子模拟基础
Quantum Simulation Foundations of Imaginary-Time Evolution of Non-Hermitian Systems

DOI: 10.12677/app.2025.154035, PP. 304-309

Keywords: 量子模拟,非厄米,虚时演化,PT对称系统,赝厄米系统
Quantum Simulation
, Non-Hermitian, Virtual Time Evolution, PT-Symmetric System, Pseudo Hermitian System

Full-Text   Cite this paper   Add to My Lib

Abstract:

非厄米量子系统哈密顿量因具有不同的对称性,在量子态快速演化、量子态区分、量子精密测量等方面展现出超越标准量子力学系统的优势和新奇特性,近二十多年来受到持续关注,成为前沿领域。量子模拟非厄米系统是主要方向之一,又是研究非厄米系统的重要手段。典型的非厄米系统包括宇称–时间(Party-Time,简称PT)对称系统和赝厄米对称系统等。已有研究集中于对非厄米系统的时间演化开展量子模拟。文章围绕非厄米系统的虚时演化算符进行研究,通过计算非厄米系统的虚时演化算符,为开展典型非厄米系统的虚时演化量子模拟理论研究打下基础。我们的研究从理论上拓展了量子计算机可模拟新奇系统的范畴,并将虚时演化拓展至非厄米系统。基于我们对非厄米系统的虚时演化理论研究,对利用不同的量子系统和量子真机开展实验研究具有指导作用。
The Hamiltonian of non-Hermitian quantum systems, due to its different symmetries, has shown advantages and novel properties beyond standard quantum mechanical systems in terms of rapid quantum state evolution, quantum state differentiation, quantum precision measurement, etc., which has attracted continuous attention and become a frontier field in the past two decades. Quantum simulation of non-Hermitian systems is one of the main directions and an important means to study non-Hermitian systems. Typical non-Hermitian systems include parity-time (PT) symmetric systems and pseudo Hermitian symmetric systems. Previous studies have focused on the quantum simulation of the time evolution of non-Hermitian systems. In this paper, the virtual time evolution operators of non-Hermitian systems are studied. By calculating the virtual time evolution operators of non-Hermitian systems, it lays a foundation for the theoretical study of virtual time evolution of typical non-Hermitian systems. Our research theoretically expands the range of novel systems that quantum computers can simulate, and extends virtual time evolution to non-Hermitian systems. Based on our research on the virtual time evolution theory of non-Hermitian systems, it has a guiding role to carry out experimental research with different quantum systems and quantum real machines.

References

[1]  McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C. and Yuan, X. (2019) Variational Ansatz-Based Quantum Simulation of Imaginary Time Evolution. npj Quantum Information, 5, Article No. 75.
https://doi.org/10.1038/s41534-019-0187-2
[2]  Jones, T., Endo, S., McArdle, S., Yuan, X. and Benjamin, S.C. (2019) Variational Quantum Algorithms for Discovering Hamiltonian Spectra. Physical Review A, 99, Article ID: 062304.
https://doi.org/10.1103/physreva.99.062304
[3]  Yeter-Aydeniz, K., Pooser, R.C. and Siopsis, G. (2020) Practical Quantum Computation of Chemical and Nuclear Energy Levels Using Quantum Imaginary Time Evolution and Lanczos Algorithms. npj Quantum Information, 6, Article No. 63.
https://doi.org/10.1038/s41534-020-00290-1
[4]  Tan, K.C. (2020) Fast Quantum Imaginary Time Evolution. arXiv: 2009.12239.
[5]  Sun, S.N., Motta, M., Tazhigulov, R.N., Tan, A.T., Chan, G.K.L. and Minnich, A.J. (2021) Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution. PRX Quantum, 1, Article ID: 010317.
[6]  Motta, M., Sun, C., Tan, A.T.K., O’Rourke, M.J., Ye, E., Minnich, A.J., et al. (2019) Determining Eigenstates and Thermal States on a Quantum Computer Using Quantum Imaginary Time Evolution. Nature Physics, 16, 205-210.
https://doi.org/10.1038/s41567-019-0704-4
[7]  Bender, C.M. and Boettcher, S. (1998) Real Spectra in Non-Hermitian Hamiltonians Havingptsymmetry. Physical Review Letters, 80, 5243-5246.
https://doi.org/10.1103/physrevlett.80.5243
[8]  Pauli, W. (1943) On Dirac's New Method of Field Quantization. Reviews of Modern Physics, 15, 175-207.
https://doi.org/10.1103/revmodphys.15.175
[9]  Mostafazadeh, A. (1998) Two-Component Formulation of the Wheeler-Dewitt Equation. Journal of Mathematical Physics, 39, 4499-4512.
https://doi.org/10.1063/1.532522

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133