全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于人工智能的可燃液体闪点预测实验研究与探索
Research and Exploration on Experiment Teaching of Flammable Liquid Flash Point Measurement Based on Artificial Intelligence

DOI: 10.12677/ae.2025.154662, PP. 1102-1111

Keywords: 化工安全,机器学习,闪点预测,新工科,教学设计
Chemical Safety
, Machine Learning, Flash Point Prediction, Emerging Engineering Education, Teaching Design

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文将机器学习与化工安全设计课内闪点测定实验有机结合,基于人工智能技术构建了可燃液体闪点测定实验。首先,通过文献和数据库收集到1800组闪点实验值和简化分子线性输入规范(SMILES)数据,对盐类、闪点缺失和SMILES缺失的数据进行剔除得到1300组可用数据。然后查阅文献,选择分子指纹作为分子描述符用于提取分子结构特征参数,基于Python内的RDKit工具包完成由溶剂SMILES到分子指纹的计算。通过调用sklearn内的随机森林算法建立溶剂闪点预测模型,引入网格搜索函数对决策树数量、深度和样本量进行优化并进行5次交叉验证防止模型过拟合。采用上述模型对测试集数据进行预测得到溶剂的闪点数据并与实验数据进行比对得到模型的准确率。该仿真实验融合了机器学习前沿学科知识和危险化学品管理、化工热力学等专业课程内容,强化了化工安全工程专业学生的基本功,激发了学生科研兴趣,实现了“智能 + 安全”新工科课程的建设。
This article combines machine learning with chemical engineering safety experiments and builds a flammable liquid flash point determination experiment based on artificial intelligence technology. Firstly, 1800 sets of flash point experimental values and Simplified Molecular Input Line Entry System (SMILES) data were collected from the reference and databases. Data with salts, missing flash points, and missing SMILES were removed, resulting in 1300 sets of usable data. Then, the molecular fingerprints as descriptor were selected to extract structural characteristic parameters of flammable liquid molecules, as suggested by literature. The calculation of solvent SMILES to molecular fingerprints was performed using the RDKit toolkit in Python. A solvent flash point prediction model was established by invoking the random forest algorithm in the sklearn package. The grid search function was used to optimize the number of decision trees, depth, and sample size, and 5-fold cross-validation was performed to prevent model overfitting. The above model was used to predict flash point data of the test set and compared with experimental data to obtain the accuracy of the model. This simulation experiment integrates cutting-edge knowledge of machine learning with professional courses in chemical management and thermodynamics, strengthening the basic training of students in chemical engineering safety engineering, stimulating students’ research interests, and realizing the construction of “intelligent + safety” new engineering courses.

References

[1]  陈长坤, 石朗, 鲍益朋, 张宇伦. 高闪点液体燃料浸润多孔介质砂床火蔓延行为实验研究[J]. 清华大学学报(自然科学版), 2023, 63(10): 1493-1501.
[2]  张立新. 危险物品火灾危险性分类探讨[J]. 化工管理, 2019(25): 148-149.
[3]  牛正玺, 冯西平. 浅析化工安全中几个重要概念的误区[J]. 动力与电气工程, 2009(27): 93.
[4]  楚卫军, 许志国. 闭口闪点测定方法的对比分析[J]. 石油炼制与化工, 2020, 51(12): 102-106.
[5]  岳大磊, 邓良健, 杨蓓, 彭速标. 易燃液体危险品闭杯闪点与持续燃烧试验探讨[J]. 消防理论研究, 2021, 40(12): 1718-1722.
[6]  樊超, 杨铁军, 侯慧芳, 母亚双, 赵玉娟. “新工科”背景下人工智能专业核心实验教学项目设计[J]. 实验技术与管理, 2021, 38(8): 183-189.
[7]  李双星, 李一昊, 林志, 张頔, 杨艳伟, 屈哲, 李言川, 霍桂桃, 吕建军. 药物发现过程中人工智能的应用研究进展[J]. 药物评价研究, 2023, 46(9): 2030-2036.
[8]  闵超, 代博仁, 张馨慧, 杜建平. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 1-15.
[9]  朱礼涛, 欧阳博, 张希宝, 罗正鸿. 机器学习在多相反应器中的应用进展[J]. 化工进展, 2021, 40(4): 1699-1714.
[10]  田璐瑶, 王梓豪, 粟杨, 文华强, 申威峰. 基于深度学习的溶剂定量构效关系建模研究进展[J]. 化工学报, 2021, 71(10): 4462-4472.
[11]  Landrum, G. (2025) The RDKit Documentation.
http://www.rdkit.org/docs
[12]  Wang, Z., Su, Y., Shen, W., Jin, S., Clark, J.H., Ren, J., et al. (2019) Predictive Deep Learning Models for Environmental Properties: The Direct Calculation of Octanol-Water Partition Coefficients from Molecular Graphs. Green Chemistry, 21, 4555-4565.
https://doi.org/10.1039/c9gc01968e
[13]  Yang, A., Su, Y., Wang, Z., Jin, S., Ren, J., Zhang, X., et al. (2021) A Multi-Task Deep Learning Neural Network for Predicting Flammability-Related Properties from Molecular Structures. Green Chemistry, 23, 4451-4465.
https://doi.org/10.1039/d1gc00331c
[14]  Wu, J., Su, Y., Yang, A., Ren, J. and Xiang, Y. (2023) An Improved Multi-Modal Representation-Learning Model Based on Fusion Networks for Property Prediction in Drug Discovery. Computers in Biology and Medicine, 165, Article ID: 107452.
https://doi.org/10.1016/j.compbiomed.2023.107452
[15]  Wang, Z., Song, Z. and Zhou, T. (2020) Machine Learning for Ionic Liquid Toxicity Prediction. Processes, 9, Article No. 65.
https://doi.org/10.3390/pr9010065
[16]  Wenzel, J., Matter, H. and Schmidt, F. (2019) Predictive Multitask Deep Neural Network Models for Adme-Tox Properties: Learning from Large Data Sets. Journal of Chemical Information and Modeling, 59, 1253-1268.
https://doi.org/10.1021/acs.jcim.8b00785
[17]  Su, Y., Wang, Z., Jin, S., Shen, W., Ren, J. and Eden, M.R. (2019) An Architecture of Deep Learning in QSPR Modeling for the Prediction of Critical Properties Using Molecular Signatures. AIChE Journal, 65, e16678.
https://doi.org/10.1002/aic.16678
[18]  Yang, A., Sun, S., Qi, L., Kong, Z.Y., Sunarso, J. and Shen, W. (2025) Development of an Interpretable QSPR Model to Predict the Octanol-Water Partition Coefficient Based on Three Artificial Intelligence Algorithms. Green Chemical Engineering, 6, 193-199.
https://doi.org/10.1016/j.gce.2024.07.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133