Since the discovery of the Hubble tension and the Sigma 8 tension, the scientific world is still puzzling over the possible causes. We have noticed an inhomogeneous nature of the measurements between the two ends of the scale, and extrapolated a similar amplitude for both, through the fractional change formula. We have matched the resulting value over the age of universe, with the ratio between the constant of universal gravitation G and the constant of the speed of light in vacuum c. The magnitude factor over the age of universe was shown to match with the ratio between G and c, hinting to a divergence of cosmological nature. A further correspondence found with the Weinberg angle from the ratio of G over the radial acceleration scale value of Mond theories, the same as the Radial Acceleration Relation, supports the hypothesis of a discrepancy caused by a phase transition, like that of the electroweak theory, responsible for the emergence of the mass in Z boson, and of the photon.
References
[1]
Abdalla, E., Abellán, G.F., Aboubrahim, A., Agnello, A., Akarsu, Ö., Akrami, Y., et al. (2022) Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. JournalofHighEnergyAstrophysics, 34, 49-211. https://doi.org/10.1016/j.jheap.2022.04.002
Freedman, W.L., Madore, B.F., Hatt, D., Hoyt, T.J., Jang, I.S., Beaton, R.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. The AstrophysicalJournal, 882, Article 34. https://doi.org/10.3847/1538-4357/ab2f73
[4]
Ivanov, M.M., Simonović, M. and Zaldarriaga, M. (2020) Cosmological Parameters from the BOSS Galaxy Power Spectrum. Journal of Cosmology and Astroparticle Physics, 2020, Article 42. https://doi.org/10.1088/1475-7516/2020/05/042
[5]
van Uitert, E., Joachimi, B., Joudaki, S., Amon, A., Heymans, C., Köhlinger, F., et al. (2018) KIDS + GAMA: Cosmology Constraints from a Joint Analysis of Cosmic Shear, Galaxy-Galaxy Lensing, and Angular Clustering. MonthlyNoticesoftheRoyalAstronomicalSociety, 476, 4662-4689. https://doi.org/10.1093/mnras/sty551
[6]
Dalang, C., Millon, M. and Baker, T. (2023) Peculiar Velocity Effects on the Hubble Constant from Time-Delay Cosmography. Physical Review D, 107, Article ID: 123528. https://doi.org/10.1103/physrevd.107.123528
[7]
Sharma, R.K., Pandey, K.L. and Das, S. (2022) Implications of an Extended Dark Energy Model with Massive Neutrinos. TheAstrophysicalJournal, 934, Article 113. https://doi.org/10.3847/1538-4357/ac7a33
[8]
Yao, Y., Yan, Y. and Meng, X. (2018) A Power-Law Coupled Three-Form Dark Energy Model. TheEuropeanPhysicalJournalC, 78, Article No. 153. https://doi.org/10.1140/epjc/s10052-018-5523-8
[9]
Abbott, B.P., Abbott, R., Abbott, T.D., et al. (2017) A Gravitational-Wave Standard Siren Measurement of the Hubble Constant. Nature, 551, 85-88. https://www.nature.com/articles/nature24471
[10]
Yuan, W., Riess, A.G., Macri, L.M., Casertano, S. and Scolnic, D.M. (2019) Consistent Calibration of the Tip of the Red Giant Branch in the Large Magellanic Cloud on the Hubble Space Telescope Photometric System and a Redetermination of the Hubble Constant. TheAstrophysicalJournal, 886, Article 61. https://doi.org/10.3847/1538-4357/ab4bc9
[11]
Dhawan, S., Goobar, A., Johansson, J., Jang, I.S., Rigault, M., Harvey, L., et al. (2022) A Uniform Type IA Supernova Distance Ladder with the Zwicky Transient Facility: Absolute Calibration Based on the Tip of the Red Giant Branch Method. The AstrophysicalJournal, 934, Article 185. https://doi.org/10.3847/1538-4357/ac7ceb
[12]
Verde, L., Treu, T. and Riess, A.G. (2019) Tensions between the Early and Late Universe. NatureAstronomy, 3, 891-895. https://doi.org/10.1038/s41550-019-0902-0
[13]
Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with λCDM. The AstrophysicalJournalLetters, 908, L6. https://doi.org/10.3847/2041-8213/abdbaf
[14]
Kourkchi, E., Tully, R.B., Anand, G.S., Courtois, H.M., Dupuy, A., Neill, J.D., et al. (2020) Cosmicflows-4: The Calibration of Optical and Infrared Tully-Fisher Relations. TheAstrophysicalJournal, 896, Article 3. https://doi.org/10.3847/1538-4357/ab901c
[15]
Asgari, M., Tröster, T., Heymans, C., Hildebrandt, H., van den Busch, J.L., Wright, A.H., et al. (2020) KiDS + VIKING-450 and DES-Y1 Combined: Mitigating Baryon Feedback Uncertainty with COSEBIs. Astronomy&Astrophysics, 634, Article No. A127. https://doi.org/10.1051/0004-6361/201936512
[16]
Planck, M. (1889) Uber Irreversible Strahlungsvorgange. https://www.biodiversitylibrary.org/item/93034#page/498/mode/1up
[17]
Tuisku, P., Pernu, T.K. and Annila, A. (2009) In the Light of Time. ProceedingsoftheRoyalSocietyA:Mathematical, PhysicalandEngineeringSciences, 465, 1173-1198. https://doi.org/10.1098/rspa.2008.0494
[18]
Rubin, V.C. and Ford, W.K.J. (1970) Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. TheAstrophysicalJournal, 159, 379-403. https://doi.org/10.1086/150317
[19]
Brouwer, M.M., Oman, K.A., Valentijn, E.A., Bilicki, M., Heymans, C., Hoekstra, H., et al. (2021) The Weak Lensing Radial Acceleration Relation: Constraining Modified Gravity and Cold Dark Matter Theories with Kids-1000. Astronomy&Astrophysics, 650, A113. https://doi.org/10.1051/0004-6361/202040108
[20]
Freundlich, J., Famaey, B., Oria, P., Bílek, M., Müller, O. and Ibata, R. (2022) Probing the Radial Acceleration Relation and the Strong Equivalence Principle with the Coma Cluster Ultra-Diffuse Galaxies. Astronomy&Astrophysics, 658, A26. https://doi.org/10.1051/0004-6361/202142060
[21]
Desmond, H. (2023) The Underlying Radial Acceleration Relation. MonthlyNoticesoftheRoyalAstronomicalSociety, 526, 3342-3351. https://doi.org/10.1093/mnras/stad2762
[22]
McGaugh, S.S., Lelli, F. and Schombert, J.M. (2016) Radial Acceleration Relation in Rotationally Supported Galaxies. PhysicalReviewLetters, 117, Article ID: 201101. https://doi.org/10.1103/physrevlett.117.201101
[23]
Gutcke, T.A. (2024) Low-Mass Globular Clusters from Stripped Dark Matter Halos. TheAstrophysicalJournal, 971, Article 103. https://doi.org/10.3847/1538-4357/ad5c62
[24]
Bashi, D., Helled, R., Zucker, S. and Mordasini, C. (2017) Two Empirical Regimes of the Planetary Mass-Radius Relation. Astronomy&Astrophysics, 604, A83. https://doi.org/10.1051/0004-6361/201629922
[25]
Everett, D.H. (1972) Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. PureandAppliedChemistry, 31, 577-638. https://doi.org/10.1351/pac197231040577
[26]
Arbey, A. (2006) Dark Fluid: A Complex Scalar Field to Unify Dark Energy and Dark Matter. PhysicalReviewD, 74, Article ID: 043516. https://doi.org/10.1103/physrevd.74.043516
[27]
Exirifard, Q. (2010) Phenomenological Covariant Approach to Gravity. General RelativityandGravitation, 43, 93-106. https://doi.org/10.1007/s10714-010-1073-6
[28]
Farnes, J.S. (2018) A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astronomy&Astrophysics, 620, A92. https://doi.org/10.1051/0004-6361/201832898
[29]
Aich, A. (2023) Interacting Dark Energy: New Parametrization and Observational Constraints. AstronomyReports, 67, 537-546. https://doi.org/10.1134/s1063772923060033
[30]
Sanna, A.P., Matsakos, T. and Diaferio, A. (2023) Covariant Formulation of Refracted Gravity. Astronomy&Astrophysics, 674, A209. https://doi.org/10.1051/0004-6361/202243553
[31]
van der Westhuizen, M.A. and Abebe, A. (2024) Interacting Dark Energy: Clarifying the Cosmological Implications and Viability Conditions. JournalofCosmologyandAstroparticlePhysics, 2024, Article 48. https://doi.org/10.1088/1475-7516/2024/01/048
[32]
Mistele, T., McGaugh, S., Lelli, F., Schombert, J. and Li, P. (2024) Indefinitely Flat Circular Velocities and the Baryonic Tully-Fisher Relation from Weak Lensing. The Astrophysical Journal Letters, 969, L3. https://doi.org/10.3847/2041-8213/ad54b0