全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nuclear Fusion Rethought: Obeying the Quantum Regime Is the Key to Permanent Plasma Confinement

DOI: 10.4236/jhepgc.2025.112035, PP. 506-517

Keywords: Fusion Reactor, Magnetic Plasma Confinement, Lorentz Transformation, Poincaré Group, Universal Spacetime

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article is devoted to a fusion reactor with an induction system designed to provide permanent magnetic confinement of the plasma in the plasma vessel of the fusion reactor. The theoretical foundations of this fusion reactor are based on the specification of symmetry conditions which satisfy the regime for fundamental fermions of quantum number 1/2 and which are also valid for negatively charged electrons and positively charged nuclei of deuterium and tritium present in the plasma of the fusion reactor. By following these basic principles and harnessing the resulting forces, the fusion process itself can be greatly simplified to generate energy from the release of the strong binding forces of the heavy isotopes of hydrogen in fusion to helium. The symmetry conditions of a double helix play a pivotal role in the delineation of a spherical model for electromagnetically induced ring oscillations that satisfy the criteria of a Poincaré group. These criteria are defined by three geometric operations: the Lorentz transformation, translation, and rotation, in conjunction with a magnetofluid dynamical equilibrium. The Poincaré group, when regarded as an explanatory model of quantum field theory, has been identified as the basis of the general theory of relativity. The magnetic field lines for the ring oscillations of particles with spin quantum number 1/2 lie on the surface of a virtual transformation sphere with a uniform radius. Group theory posits that the centers of this sphere constitute a homogeneous group, represented by an operator that can be delineated by a matrix. Consequently, the diameter of this spherical space is defined by the diameter of the plasma volume. The number of magnetic field lines is, in turn, constrained by the radius of inertia of the particles. In a broader sense, a double helix is an orbital stratified model of universal spacetime.

References

[1]  Spitzer, L. (1958) The Stellarator Concept. The Physics of Fluids, 1, 253-264.
https://doi.org/10.1063/1.1705883
[2]  Zohm, H. (2023) Max-Planck-Institut für Plasmaphysik Garching, Stuttgart Talk 19 June. 2023 Nuclear Fusion-Bringing Starfire to Earth.
https://www.youtube.com/watch?v=t_9rX7a_tOU
[3]  Uhlenbeck, G.E. and Goudsmit, S. (1926) Spinning Electrons and the Structure of Spectra. Nature, 117, 264-265.
https://doi.org/10.1038/117264a0
[4]  Dirac, P. (1958) The Principles of Quantum Mechanics. Oxford University Press.
[5]  Hawking, S. (2018) A Brief History of Time (Translated by Hainer Kober). 23rd Edition, Bantam.
[6]  Jammer, M. (1956) The Conceptual Development of Quantum Mechanics. McGraw-Hill, 150.
[7]  Nietzsche, F. (1906) The Will to Power. C. G. Naumann Verlag.
[8]  Heidegger, M. (2004) Milestones (1919-1961). In: von Herrmann, F.-W., Ed., On the Question of Being (1955), 3rd Edition, 313-314.
[9]  Joos, H. (1962) On the Representation Theory of the Inhomogeneous Lorentz Group as the Basis of Quantum Mechanical Kinematics. Progress in Physics, 10, 65-146.
[10]  Apostol, T.M. (1976) Modular Functions and Dirichlet Series in Number Theory. Springer-Verlag, 9.
[11]  Poincaré, M.H. (1906) Sur la dynamique de l’électron. Rendiconti del Circolo matematico di Palermo, 21, 129-175.
https://doi.org/10.1007/bf03013466
[12]  Neiser, T.F., Jenko, F., Carter, T.A., Schmitz, L., Told, D., Merlo, G., et al. (2019) Gyrokinetic GENE Simulations of DIII-D Near-Edge L-Mode Plasmas. Physics of Plasmas, 26, Article ID: 092510.
https://doi.org/10.1063/1.5052047
[13]  Zweben, S.J., Diallo, A., Lampert, M., Stoltzfus-Dueck, T. and Banerjee, S. (2021) Edge Turbulence Velocity Preceding the L-H Transition in NSTX. Physics of Plasmas, 28, Article ID: 032304.
https://doi.org/10.1063/5.0039153
[14]  Ryutov, D.D., Berk, H.L., Cohen, B.I., Molvik, A.W. and Simonen, T.C. (2011) Magneto-Hydrodynamically Stable Axisymmetric Mirrors. Physics of Plasmas, 18, Article ID: 092301.
https://doi.org/10.1063/1.3624763
[15]  Pedersen, T.S., Otte, M., Lazerson, S., Helander, P., Bozhenkov, S., Biedermann, C., et al. (2017) Erratum: Confirmation of the Topology of the Wendelstein 7-X Magnetic Field to Better than 1:100,000. Nature Communications, 8, Article No. 14491.
https://doi.org/10.1038/ncomms14491
[16]  Ganzhorn, M., Klyatskaya, S., Ruben, M. and Wernsdorfer, W. (2016) Quantum Einstein-de Haas effect. Nature Communications, 7, Article No. 11443.
https://doi.org/10.1038/ncomms11443
[17]  Krause, S., Herzog, G., Schlenhoff, A., Sonntag, A. and Wiesendanger, R. (2011) Joule Heating and Spin-Transfer Torque Investigated on the Atomic Scale Using a Spin-Polarized Scanning Tunneling Microscope. Physical Review Letters, 107, Article ID: 186601.
https://doi.org/10.1103/physrevlett.107.186601
[18]  Whyte, D.G., Hubbard, A.E., Hughes, J.W., Lipschultz, B., Rice, J.E., Marmar, E.S., et al. (2010) I-Mode: An H-Mode Energy Confinement Regime with L-Mode Particle Transport in Alcator C-Mod. Nuclear Fusion, 50, Article ID: 105005.
https://doi.org/10.1088/0029-5515/50/10/105005
[19]  Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., et al. (2022) Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning. Nature, 602, 414-419.
https://doi.org/10.1038/s41586-021-04301-9
[20]  Rubel, M., Widdowson, A., Dittrich, L., Moon, S., Weckmann, A. and Petersson, P. (2022) Application of Ion Beam Analysis in Studies of First Wall Materials in Controlled Fusion Devices. Physics, 4, 37-50.
https://doi.org/10.3390/physics4010004
[21]  Moiseenko, V.E., Kovtun, Y.V., Wauters, T., Goriaev, A., Lyssoivan, A.I., Lozin, A.V., et al. (2020) First Experiments on ICRF Discharge Generation by a W7-X-Like Antenna in the Uragan-2M Stellarator. Journal of Plasma Physics, 86, Article ID: 905860517.
https://doi.org/10.1017/s0022377820001099
[22]  Graham, J.N., Mielke III, C., Das, D., Morresi, T., Sazgari, V., Suter, A., et al. (2024) Depth-Dependent Study of Time-Reversal Symmetry-Breaking in the Kagome Superconductor AV3Sb5. Nature Communications, 15, Article No. 8978.
https://doi.org/10.1038/s41467-024-52688-6
[23]  Reginald, B.L. (2015) A Theory of the Relativistic Fermionic Spinrevorbital. International Journal of Physical Sciences, 10, 1-37.
https://doi.org/10.5897/ijps2014.4164
[24]  Møller, C. (1952) The Theory of Relativity. § 18. The Most General Lorentz Transformation, 41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133