全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relic Black Holes, in Terms of a Quantum Number n & Torsion and Multi-Messenger Spin-Offs

DOI: 10.4236/jhepgc.2025.112034, PP. 480-505

Keywords: Inflation, Gravitational Waves

Full-Text   Cite this paper   Add to My Lib

Abstract:

Our idea for black holes is using Torsion to form a cosmological constant. Planck sized black holes allow for a spin density term canceling Torsion. Also, a solution to the early universe three-body problem at the start of the black holes, and number n selected. And we conclude with a generalized uncertainty principle which is then linked to a black hole versus white hole, linked by a worm hole problem. The spin-offs of connection to multi-messenger astronomy will be enumerated in the last part of this document.

References

[1]  de Sabbata, V. and Sivaram, C. (1991) Torsion, Quantum Effects and the Problem of Cosmological Constant. In: Zichichi, A., de Sabbata, V. and Sachez, N., Eds., Gravitation and Modern Cosmology, Springer, 19-36.
https://doi.org/10.1007/978-1-4899-0620-5_4
[2]  Beckwith, A.W. (2024) How Torsion as Presented by De Sabbata and Sivaram in Erice 1990 Argument as Modified May Permit Cosmological Constant, and Baseline as to Dark Energy. Journal of High Energy Physics, Gravitation and Cosmology, 10, 138-148.
https://doi.org/10.4236/jhepgc.2024.101012
[3]  Chavanis, P. (2014) Self-Gravitating Bose-Einstein Condensates. In: Calmet, X., Ed., Fundamental Theories of Physics, Springer International Publishing, 151-194.
https://doi.org/10.1007/978-3-319-10852-0_6
[4]  Carlip, S. (2009) Black Hole Thermodynamics and Statistical Mechanics. In: Papantonopoulos, E., Ed., Physics of Black Holes: A Guided Tour, Springer, 89-123.
https://doi.org/10.1007/978-3-540-88460-6_3
[5]  Corda, C. (2023) Black Hole Spectra from Vaz’s Quantum Gravitational Collapse.
https://arxiv.org/abs/2305.02184
[6]  Casadio, R. and Micu, O. (2024) Quantum Matter Core of Black Holes (and Quantum Hair). In: Joshi, P. and Malafarina, D., Eds., New Frontiers in Gravitational Collapse and Spacetime Singularities, Springer, 53-84.
https://doi.org/10.1007/978-981-97-1172-7_2
[7]  Feng, Z., Ling, Y., Wu, X. and Jiang, Q. (2024) New Black-to-White Hole Solutions with Improved Geometry and Energy Conditions. Science China Physics, Mechanics & Astronomy, 67, Article ID: 270412.
https://doi.org/10.1007/s11433-023-2373-0
[8]  Ohanian, H.C. and Ruffini, R. (2013) Gravitation and Spacetime. 3rd Edition, Cambridge University Press.
https://doi.org/10.1017/cbo9781139003391
[9]  Will, C. (2015) Was Einstein Right? A Centenary Assessment. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation: A Centennial Perspective, Cambridge University Press, 49-96.
[10]  Will, C. (2014) The Confrontation between General Relativity and Experiment.
http://relativity.livingreviews.org/Articles/lrr-2014-4/download/lrr-2014-4Color.pdf
[11]  Nye, L. (2024) Complexity Considerations in the Heisenberg Uncertainty Principle.
https://www.researchgate.net/publication/380889881_Complexity_Considerations_in_the_Heisenberg_Uncertainty_Principle
[12]  Padmanabhan, T. (2006) An Invitation to Astrophysics. World Scientific.
https://doi.org/10.1142/6010
[13]  Downes, T.G. and Milburn, G.J. (2011) Optimal Quantum Estimation for Gravitation.
[14]  Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130.
https://doi.org/10.1139/p86-019
[15]  Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 1453-1453.
https://doi.org/10.1139/p86-257
[16]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Scientific.
https://doi.org/10.1142/6730
[17]  Beckwith, A. (2022) New Conservation Law as to Hubble Parameter, Squared Divided by Time Derivative of Inflaton in Early and Late Universe, Compared with Discussion of HUP in Pre Planckian to Planckian Physics, and Relevance of Fifth Force Analysis to Gravitons and GW. In: Frajuca, C., Ed., Gravitational WavesTheory and Observations, IntechOpen, 1-18.
https://www.intechopen.com/online-first/1125889
[18]  Wald, R.M. (1994) Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. University of Chicago Press.
[19]  Birrell, N.D. and Davies, P.C.W. (1982) Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics, Cambridge University Press.
[20]  Ng, Y.J. and Jack, Y. (2007) Holographic Foam, Dark Energy and Infinite Statistics. Physics Letters B, 657, 10-14.
https://doi.org/10.1016/j.physletb.2007.09.052
[21]  Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461.
https://doi.org/10.3390/e10040441
[22]  Corda, C. (2012) Primordial Gravity’s Breath. EJTP, 9, Article No. 26.
http://arxiv.org/abs/1110.1772
[23]  Casadio, R. and Giusti, A. (2021) Classicalizing Gravity. In: Saeidakis, E., et al., Eds., Modified Gravity and Cosmology, Springer International Publishing, 405-418.
https://doi.org/10.1007/978-3-030-83715-0_27
[24]  Beckwith, A.W. (2018) Structure Formation and Non-Linear Electrodynamics with Attendant Changes in Gravitational Potential and Its Relationship to the 3 Body Problem. Journal of High Energy Physics, Gravitation and Cosmology, 4, 779-786.
https://doi.org/10.4236/jhepgc.2018.44043
[25]  Valtonen, M. and Karttunen, H. (2006) The Three-Body Problem. Cambridge University Press.
https://doi.org/10.1017/cbo9780511616006
[26]  Mukhanov, V. (2005) Physical Foundations of Cosmology. Cambridge University Press.
https://doi.org/10.1017/cbo9780511790553
[27]  Maldacena, J., Milekhin, A. and Popov, F. (2018) Traversable Wormholes in Four Dimensions.
https://arxiv.org/abs/1807.04726
[28]  Abbott, B.P., et al. (2009) An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin. Nature, 460, 990-994.
https://doi.org/10.1038/nature08278
[29]  Li, M., Li, X.-D., Wang, S. and Wang, Y. (2015) Dark Energy. Peking University World Scientific Advance Physics Series, Volume 1, World Scientific.
[30]  Maartens, R. (2004) Brane-World Gravity. Living Reviews in Relativity, 7, 213-247.
https://doi.org/10.12942/lrr-2004-7
[31]  Beckwith, A.W. (2010) Applications of Euclidian Snyder Geometry to the Foundations of Space Time Physics. EJTP, 7, 241-266.
[32]  Alves, E., Miranda, O. and de Araujo, J. (2010) Can Massive Gravitons Be an Alternative to Dark Energy?
http://arxiv.org/pdf/0907.5190
[33]  Rubakov, V.A. (2002) Classical Theory of Gauge Fields. Princeton University Press.
[34]  Dubovsky, S., et al. (2009) Signatures of a Graviton Mass in the Cosmic Microwave Background. Physical Review D, 81, Article ID: 023523.
http://arxiv.org/abs/0907.1658
[35]  Kolb, E. and Turner, M. (1990) The Early Universe. Addison-Wesley Publishing Company.
[36]  Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Nonlinear Electrodynamics. Physical Review D, 69, Article ID: 123504.
https://doi.org/10.1103/physrevd.69.123504
[37]  Lust, D. and Vleeshouwers, S. (2019) Black Hole Information and Thermodynamics. Springer Briefs in Physics, Springer Verlag.
[38]  Mohanty, S. (2020) Astroparticle Physics and Cosmology, Perspectives in the Multimessenger Era. Springer Nature.
[39]  Bartos, I. and Kowalski, M. (2017) Multimessenger Astronomy. IOP Publishing.
https://doi.org/10.1088/978-0-7503-1369-8
[40]  Kuroyanagi, S., Ringeval, C. and Takahashi, T. (2013) Early Universe Tomography with CMB and Gravitational Waves. Physical Review D, 87, Article ID: 083502.
https://doi.org/10.1103/physrevd.87.083502

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133