Our idea for black holes is using Torsion to form a cosmological constant. Planck sized black holes allow for a spin density term canceling Torsion. Also, a solution to the early universe three-body problem at the start of the black holes, and number n selected. And we conclude with a generalized uncertainty principle which is then linked to a black hole versus white hole, linked by a worm hole problem. The spin-offs of connection to multi-messenger astronomy will be enumerated in the last part of this document.
References
[1]
de Sabbata, V. and Sivaram, C. (1991) Torsion, Quantum Effects and the Problem of Cosmological Constant. In: Zichichi, A., de Sabbata, V. and Sachez, N., Eds., GravitationandModernCosmology, Springer, 19-36. https://doi.org/10.1007/978-1-4899-0620-5_4
[2]
Beckwith, A.W. (2024) How Torsion as Presented by De Sabbata and Sivaram in Erice 1990 Argument as Modified May Permit Cosmological Constant, and Baseline as to Dark Energy. JournalofHighEnergyPhysics, GravitationandCosmology, 10, 138-148. https://doi.org/10.4236/jhepgc.2024.101012
[3]
Chavanis, P. (2014) Self-Gravitating Bose-Einstein Condensates. In: Calmet, X., Ed., FundamentalTheoriesofPhysics, Springer International Publishing, 151-194. https://doi.org/10.1007/978-3-319-10852-0_6
[4]
Carlip, S. (2009) Black Hole Thermodynamics and Statistical Mechanics. In: Papantonopoulos, E., Ed., Physics of Black Holes: A Guided Tour, Springer, 89-123. https://doi.org/10.1007/978-3-540-88460-6_3
[5]
Corda, C. (2023) Black Hole Spectra from Vaz’s Quantum Gravitational Collapse. https://arxiv.org/abs/2305.02184
[6]
Casadio, R. and Micu, O. (2024) Quantum Matter Core of Black Holes (and Quantum Hair). In: Joshi, P. and Malafarina, D., Eds., New Frontiers in Gravitational Collapse and Spacetime Singularities, Springer, 53-84. https://doi.org/10.1007/978-981-97-1172-7_2
[7]
Feng, Z., Ling, Y., Wu, X. and Jiang, Q. (2024) New Black-to-White Hole Solutions with Improved Geometry and Energy Conditions. ScienceChinaPhysics, Mechanics&Astronomy, 67, Article ID: 270412. https://doi.org/10.1007/s11433-023-2373-0
[8]
Ohanian, H.C. and Ruffini, R. (2013) Gravitation and Spacetime. 3rd Edition, Cambridge University Press. https://doi.org/10.1017/cbo9781139003391
[9]
Will, C. (2015) Was Einstein Right? A Centenary Assessment. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., GeneralRelativityandGravitation: ACentennialPerspective, Cambridge University Press, 49-96.
[10]
Will, C. (2014) The Confrontation between General Relativity and Experiment. http://relativity.livingreviews.org/Articles/lrr-2014-4/download/lrr-2014-4Color.pdf
[11]
Nye, L. (2024) Complexity Considerations in the Heisenberg Uncertainty Principle. https://www.researchgate.net/publication/380889881_Complexity_Considerations_in_the_Heisenberg_Uncertainty_Principle
[12]
Padmanabhan, T. (2006) An Invitation to Astrophysics. World Scientific. https://doi.org/10.1142/6010
[13]
Downes, T.G. and Milburn, G.J. (2011) Optimal Quantum Estimation for Gravitation.
[14]
Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130. https://doi.org/10.1139/p86-019
[15]
Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 1453-1453. https://doi.org/10.1139/p86-257
[16]
Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Scientific. https://doi.org/10.1142/6730
[17]
Beckwith, A. (2022) New Conservation Law as to Hubble Parameter, Squared Divided by Time Derivative of Inflaton in Early and Late Universe, Compared with Discussion of HUP in Pre Planckian to Planckian Physics, and Relevance of Fifth Force Analysis to Gravitons and GW. In: Frajuca, C., Ed., GravitationalWaves—TheoryandObservations, IntechOpen, 1-18. https://www.intechopen.com/online-first/1125889
[18]
Wald, R.M. (1994) Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. University of Chicago Press.
[19]
Birrell, N.D. and Davies, P.C.W. (1982) Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics, Cambridge University Press.
[20]
Ng, Y.J. and Jack, Y. (2007) Holographic Foam, Dark Energy and Infinite Statistics. PhysicsLettersB, 657, 10-14. https://doi.org/10.1016/j.physletb.2007.09.052
[21]
Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. https://doi.org/10.3390/e10040441
Casadio, R. and Giusti, A. (2021) Classicalizing Gravity. In: Saeidakis, E., et al., Eds., ModifiedGravityandCosmology, Springer International Publishing, 405-418. https://doi.org/10.1007/978-3-030-83715-0_27
[24]
Beckwith, A.W. (2018) Structure Formation and Non-Linear Electrodynamics with Attendant Changes in Gravitational Potential and Its Relationship to the 3 Body Problem. Journal ofHighEnergyPhysics, GravitationandCosmology, 4, 779-786. https://doi.org/10.4236/jhepgc.2018.44043
[25]
Valtonen, M. and Karttunen, H. (2006) The Three-Body Problem. Cambridge University Press. https://doi.org/10.1017/cbo9780511616006
[26]
Mukhanov, V. (2005) Physical Foundations of Cosmology. Cambridge University Press. https://doi.org/10.1017/cbo9780511790553
[27]
Maldacena, J., Milekhin, A. and Popov, F. (2018) Traversable Wormholes in Four Dimensions. https://arxiv.org/abs/1807.04726
[28]
Abbott, B.P., et al. (2009) An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin. Nature, 460, 990-994. https://doi.org/10.1038/nature08278
[29]
Li, M., Li, X.-D., Wang, S. and Wang, Y. (2015) Dark Energy. Peking University World Scientific Advance Physics Series, Volume 1, World Scientific.
[30]
Maartens, R. (2004) Brane-World Gravity. LivingReviewsinRelativity, 7, 213-247. https://doi.org/10.12942/lrr-2004-7
[31]
Beckwith, A.W. (2010) Applications of Euclidian Snyder Geometry to the Foundations of Space Time Physics. EJTP, 7, 241-266.
[32]
Alves, E., Miranda, O. and de Araujo, J. (2010) Can Massive Gravitons Be an Alternative to Dark Energy? http://arxiv.org/pdf/0907.5190
[33]
Rubakov, V.A. (2002) Classical Theory of Gauge Fields. Princeton University Press.
[34]
Dubovsky, S., et al. (2009) Signatures of a Graviton Mass in the Cosmic Microwave Background. Physical Review D, 81, Article ID: 023523. http://arxiv.org/abs/0907.1658
[35]
Kolb, E. and Turner, M. (1990) The Early Universe. Addison-Wesley Publishing Company.
[36]
Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Nonlinear Electrodynamics. PhysicalReviewD, 69, Article ID: 123504. https://doi.org/10.1103/physrevd.69.123504
[37]
Lust, D. and Vleeshouwers, S. (2019) Black Hole Information and Thermodynamics. Springer Briefs in Physics, Springer Verlag.
[38]
Mohanty, S. (2020) Astroparticle Physics and Cosmology, Perspectives in the Multimessenger Era. Springer Nature.
[39]
Bartos, I. and Kowalski, M. (2017) Multimessenger Astronomy. IOP Publishing. https://doi.org/10.1088/978-0-7503-1369-8
[40]
Kuroyanagi, S., Ringeval, C. and Takahashi, T. (2013) Early Universe Tomography with CMB and Gravitational Waves. PhysicalReviewD, 87, Article ID: 083502. https://doi.org/10.1103/physrevd.87.083502