全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exosomes in Nasopharyngeal Carcinoma: From Pathogenesis to Clinical Applications

DOI: 10.4236/jbm.2025.134038, PP. 465-497

Keywords: Nasopharyngeal Carcinoma, Exosomes, Proliferation, Metastasis, Diagnosis, Prognosis, Biomarker

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with a unique geographical distribution, predominantly prevalent in East Africa and Asia. Despite advances in understanding its pathogenesis and risk factors, prevention and treatment efforts remain limited. Numerous studies indicate that exosomes actively participate in NPC development by delivering bioactive molecules such as non-coding RNAs and proteins to target cells. In NPC, exosomes regulate the tumor microenvironment, mediate chemoradiotherapy resistance, induce immunosuppression, promote pathological angiogenesis, and support metastasis, making them promising biomarkers. Due to their critical roles and unique biological properties, exosomes hold significant potential for diagnostic monitoring and prognostic evaluation. Although technical challenges exist in their large-scale application, exosomes offer unparalleled advantages in clinical management. This review summarizes the biological functions of exosomes in NPC and explores their prospects as clinical biomarkers.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2]  Wang, Y., Yan, Q., Fan, C., Mo, Y., Wang, Y., Li, X., et al. (2023) Overview and Countermeasures of Cancer Burden in China. Science China Life Sciences, 66, 2515-2526.
https://doi.org/10.1007/s11427-022-2240-6
[3]  Chen, Y., Chan, A.T.C., Le, Q., Blanchard, P., Sun, Y. and Ma, J. (2019) Nasopharyngeal Carcinoma. The Lancet, 394, 64-80.
https://doi.org/10.1016/s0140-6736(19)30956-0
[4]  Juarez-Vignon Whaley, J.J., Afkhami, M., Onyshchenko, M., Massarelli, E., Sampath, S., Amini, A., et al. (2023) Recurrent/Metastatic Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Heading? Current Treatment Options in Oncology, 24, 1138-1166.
https://doi.org/10.1007/s11864-023-01101-3
[5]  Chak, P., Kam, N., Choi, T., Dai, W. and Kwong, D.L. (2024) Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers, 16, Article No. 919.
https://doi.org/10.3390/cancers16050919
[6]  Tenchov, R., Sasso, J.M., Wang, X., Liaw, W., Chen, C. and Zhou, Q.A. (2022) Exosomes-Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano, 16, 17802-17846.
https://doi.org/10.1021/acsnano.2c08774
[7]  Kimiz-Gebologlu, I. and Oncel, S.S. (2022) Exosomes: Large-Scale Production, Isolation, Drug Loading Efficiency, and Biodistribution and Uptake. Journal of Controlled Release, 347, 533-543.
https://doi.org/10.1016/j.jconrel.2022.05.027
[8]  Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[9]  Lai, J.J., Chau, Z.L., Chen, S., Hill, J.J., Korpany, K.V., Liang, N., et al. (2022) Exosome Processing and Characterization Approaches for Research and Technology Development. Advanced Science, 9, e2103222.
https://doi.org/10.1002/advs.202103222
[10]  Witwer, K.W., Buzás, E.I., Bemis, L.T., Bora, A., Lässer, C., Lötvall, J., et al. (2013) Standardization of Sample Collection, Isolation and Analysis Methods in Extracellular Vesicle Research. Journal of Extracellular Vesicles, 2, Article No. 20360.
https://doi.org/10.3402/jev.v2i0.20360
[11]  Li, J., Wang, J. and Chen, Z. (2025) Emerging Role of Exosomes in Cancer Therapy: Progress and Challenges. Molecular Cancer, 24, Article No. 13.
https://doi.org/10.1186/s12943-024-02215-4
[12]  Peng, Y., Yang, Y., Li, Y., Shi, T., Luan, Y. and Yin, C. (2023) Exosome and Virus Infection. Frontiers in Immunology, 14, Article 1154217.
https://doi.org/10.3389/fimmu.2023.1154217
[13]  Trams, E.G., Lauter, C.J., Norman Salem, J. and Heine, U. (1981) Exfoliation of Membrane ECTO-Enzymes in the Form of Micro-Vesicles. Biochimica et Biophysica Acta (BBA)—Biomembranes, 645, 63-70.
https://doi.org/10.1016/0005-2736(81)90512-5
[14]  Harding, C., Heuser, J. and Stahl, P. (1983) Receptor-Mediated Endocytosis of Transferrin and Recycling of the Transferrin Receptor in Rat Reticulocytes. The Journal of cell biology, 97, 329-339.
https://doi.org/10.1083/jcb.97.2.329
[15]  Shen, M., Shen, Y., Fan, X., Men, R., Ye, T. and Yang, L. (2020) Roles of Macrophages and Exosomes in Liver Diseases. Frontiers in Medicine, 7, Article 583691.
https://doi.org/10.3389/fmed.2020.583691
[16]  Yoshizaki, T., Kondo, S., Wakisaka, N., Murono, S., Endo, K., Sugimoto, H., et al. (2013) Pathogenic Role of Epstein-Barr Virus Latent Membrane Protein-1 in the Development of Nasopharyngeal Carcinoma. Cancer Letters, 337, 1-7.
https://doi.org/10.1016/j.canlet.2013.05.018
[17]  Wu, X., Zhou, Z., Xu, S., Liao, C., Chen, X., Li, B., et al. (2020) Extracellular Vesicle Packaged LMP1-Activated Fibroblasts Promote Tumor Progression via Autophagy and Stroma-Tumor Metabolism Coupling. Cancer Letters, 478, 93-106.
https://doi.org/10.1016/j.canlet.2020.03.004
[18]  Liao, C., Zhou, Q., Zhang, Z., Wu, X., Zhou, Z., Li, B., et al. (2020) Epstein-Barr Virus‐encoded Latent Membrane Protein 1 Promotes Extracellular Vesicle Secretion through Syndecan-2 and Synaptotagmin-Like-4 in Nasopharyngeal Carcinoma Cells. Cancer Science, 111, 857-868.
https://doi.org/10.1111/cas.14305
[19]  Hurwitz, S.N., Nkosi, D., Conlon, M.M., York, S.B., Liu, X., Tremblay, D.C., et al. (2017) CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. Journal of Virology, 91, e02251-16.
https://doi.org/10.1128/jvi.02251-16
[20]  Zhang, Z., Yu, X., Zhou, Z., Li, B., Peng, J., Wu, X., et al. (2019) LMP1-Positive Extracellular Vesicles Promote Radioresistance in Nasopharyngeal Carcinoma Cells through P38 MAPK Signaling. Cancer Medicine, 8, 6082-6094.
https://doi.org/10.1002/cam4.2506
[21]  Chen, X., Xie, D., Zhao, Q. and You, Z. (2017) MicroRNAs and Complex Diseases: From Experimental Results to Computational Models. Briefings in Bioinformatics, 20, 515-539.
https://doi.org/10.1093/bib/bbx130
[22]  Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article No. 7167.
https://doi.org/10.3390/ijms23137167
[23]  Zhou, X., Xu, H., Huang, G. and Lin, B. (2024) Nasopharyngeal Carcinoma Derived Exosomes Regulate the Proliferation and Migration of Nasopharyngeal Carcinoma Cells by Mediating the miR-99a-5p BAZ2A Axis. Brazilian Journal of Otorhinolaryngology, 90, Article ID: 101343.
https://doi.org/10.1016/j.bjorl.2023.101343
[24]  Shan, Y., Fan, H., Chai, L., Kong, X., Xiao, H., You, M., et al. (2024) Tumor-Derived Exosomal miR-103a-3p Promotes Vascular Permeability and Proliferation by Targeting ZO-1 and ACOX-1 in Nasopharyngeal Carcinoma. Translational Cancer Research, 13, 4896-4912.
https://doi.org/10.21037/tcr-23-2359
[25]  Cheng, Q., Li, Q., Xu, L. and Jiang, H. (2021) Exosomal microRNA-301a-3p Promotes the Proliferation and Invasion of Nasopharyngeal Carcinoma Cells by Targeting BTG1 mRNA. Molecular Medicine Reports, 23, Article No. 328.
https://doi.org/10.3892/mmr.2021.11967
[26]  Yin, H., Qiu, X., Shan, Y., You, B., Xie, L., Zhang, P., et al. (2021) HIF‐1α Downregulation of miR-433-3p in Adipocyte‐Derived Exosomes Contributes to NPC Progression via Targeting SCD1. Cancer Science, 112, 1457-1470.
https://doi.org/10.1111/cas.14829
[27]  Ye, S., Li, Z., Luo, D., Huang, B., Chen, Y., Zhang, X., et al. (2014) Tumor-Derived Exosomes Promote Tumor Progression and T-Cell Dysfunction through the Regulation of Enriched Exosomal microRNAs in Human Nasopharyngeal Carcinoma. Oncotarget, 5, 5439-5452.
https://doi.org/10.18632/oncotarget.2118
[28]  Han, C., Zhang, C., Wang, H. and Zhao, L. (2021) Exosome-Mediated Communication between Tumor Cells and Tumor-Associated Macrophages: Implications for Tumor Microenvironment. OncoImmunology, 10, Article ID: 1887552.
https://doi.org/10.1080/2162402x.2021.1887552
[29]  Chen, W., Bao, L., Ren, Q., Zhang, Z., Yi, L., Lei, W., et al. (2023) SCARB1 in Extracellular Vesicles Promotes NPC Metastasis by Co-Regulating M1 and M2 Macrophage Function. Cell Death Discovery, 9, Article No. 323.
https://doi.org/10.1038/s41420-023-01621-9
[30]  Yao, H., Tian, L., Yan, B., Yang, L. and Li, Y. (2022) LncRNA TP73‐AS1 Promotes Nasopharyngeal Carcinoma Progression through Targeting miR-342-3p and M2 Polarization via Exosomes. Cancer Cell International, 22, Article No. 16.
https://doi.org/10.1186/s12935-021-02418-5
[31]  Xu, H., Russell, S.N., Steiner, K., O’Neill, E. and Jones, K.I. (2024) Targeting PI3K-Gamma in Myeloid Driven Tumour Immune Suppression: A Systematic Review and Meta-Analysis of the Preclinical Literature. Cancer Immunology, Immunotherapy, 73, Article No. 204.
https://doi.org/10.1007/s00262-024-03779-2
[32]  Chen, W., Zuo, F., Zhang, K., Xia, T., Lei, W., Zhang, Z., et al. (2021) Exosomal MIF Derived from Nasopharyngeal Carcinoma Promotes Metastasis by Repressing Ferroptosis of Macrophages. Frontiers in Cell and Developmental Biology, 9, Article 791187.
https://doi.org/10.3389/fcell.2021.791187
[33]  Shan, Y., You, B., Shi, S., Shi, W., Zhang, Z., Zhang, Q., et al. (2018) Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death & Disease, 9, Article No. 382.
https://doi.org/10.1038/s41419-018-0425-0
[34]  Aga, M., Bentz, G.L., Raffa, S., Torrisi, M.R., Kondo, S., Wakisaka, N., et al. (2014) Exosomal HIF1α Supports Invasive Potential of Nasopharyngeal Carcinoma-Associated LMP1-Positive Exosomes. Oncogene, 33, 4613-4622.
https://doi.org/10.1038/onc.2014.66
[35]  Zhuang, T., Wang, S., Yu, X., He, X., Guo, H. and Ou, C. (2024) Current Status and Future Perspectives of Platelet-Derived Extracellular Vesicles in Cancer Diagnosis and Treatment. Biomarker Research, 12, Article No. 88.
https://doi.org/10.1186/s40364-024-00639-0
[36]  Li, F., Xu, T., Chen, P., Sun, R., Li, C., Zhao, X., et al. (2022) Platelet-Derived Extracellular Vesicles Inhibit Ferroptosis and Promote Distant Metastasis of Nasopharyngeal Carcinoma by Upregulating ITGB3. International Journal of Biological Sciences, 18, 5858-5872.
https://doi.org/10.7150/ijbs.76162
[37]  Żmigrodzka, M., Witkowska-Piłaszewicz, O. and Winnicka, A. (2020) Platelets Extracellular Vesicles as Regulators of Cancer Progression—An Updated Perspective. International Journal of Molecular Sciences, 21, Article No. 5195.
https://doi.org/10.3390/ijms21155195
[38]  Xie, H., Jiang, M., Jiang, K., Tang, L., Chen, Q., Yang, A., et al. (2024) Communication between Cancer Cell Subtypes by Exosomes Contributes to Nasopharyngeal Carcinoma Metastasis and Poor Prognosis. Precision Clinical Medicine, 7, pbae018.
https://doi.org/10.1093/pcmedi/pbae018
[39]  Li, F., Zhao, X., Sun, R., Ou, J., Huang, J., Yang, N., et al. (2020) EGFR‐Rich Extracellular Vesicles Derived from Highly Metastatic Nasopharyngeal Carcinoma Cells Accelerate Tumour Metastasis through PI3K/AKT Pathway‐Suppressed ROS. Journal of Extracellular Vesicles, 10, e12003.
https://doi.org/10.1002/jev2.12003
[40]  Deng, Y., Liu, X., Huang, Y., Ye, J., He, Q., Luo, Y., et al. (2023) STIM1-Regulated Exosomal EBV-LMP1 Empowers Endothelial Cells with an Aggressive Phenotype by Activating the Akt/ERK Pathway in Nasopharyngeal Carcinoma. Cellular Oncology, 46, 987-1000.
https://doi.org/10.1007/s13402-023-00790-0
[41]  Wei, J., Ye, J., Luo, Y., Weng, J., He, Q., Liu, F., et al. (2020) EB Virus Promotes Metastatic Potential by Boosting STIM1-Dependent Ca2+ Signaling in Nasopharyngeal Carcinoma Cells. Cancer Letters, 478, 122-132.
https://doi.org/10.1016/j.canlet.2020.03.005
[42]  You, B., Pan, S., Gu, M., Zhang, K., Xia, T., Zhang, S., et al. (2022) Extracellular Vesicles Rich in HAX1 Promote Angiogenesis by Modulating ITGB6 Translation. Journal of Extracellular Vesicles, 11, e12221.
https://doi.org/10.1002/jev2.12221
[43]  You, B., Cao, X., Shao, X., Ni, H., Shi, S., Shan, Y., et al. (2016) Clinical and Biological Significance of HAX-1 Overexpression in Nasopharyngeal Carcinoma. Oncotarget, 7, 12505-12524.
https://doi.org/10.18632/oncotarget.7274
[44]  Yu, C., Xue, B., Li, J. and Zhang, Q. (2022) Tumor Cell-Derived Exosome RNF126 Affects the Immune Microenvironment and Promotes Nasopharyngeal Carcinoma Progression by Regulating PTEN Ubiquitination. Apoptosis, 27, 590-605.
https://doi.org/10.1007/s10495-022-01738-9
[45]  You, Y., Shan, Y., Chen, J., Yue, H., You, B., Shi, S., et al. (2015) Matrix Metalloproteinase 13-Containing Exosomes Promote Nasopharyngeal Carcinoma Metastasis. Cancer Science, 106, 1669-1677.
https://doi.org/10.1111/cas.12818
[46]  Jasim, S.A., Al-Hawary, S.I.S., Kaur, I., Ahmad, I., Hjazi, A., Petkov, I., et al. (2024) Critical Role of Exosome, Exosomal Non-Coding RNAs and Non-Coding RNAs in Head and Neck Cancer Angiogenesis. PathologyResearch and Practice, 256, Article ID: 155238.
https://doi.org/10.1016/j.prp.2024.155238
[47]  Paskeh, M.D.A., Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M.J., et al. (2022) Emerging Role of Exosomes in Cancer Progression and Tumor Microenvironment Remodeling. Journal of Hematology & Oncology, 15, Article No. 83.
https://doi.org/10.1186/s13045-022-01305-4
[48]  Gu, M., Li, L., Zhang, Z., Chen, J., Zhang, W., Zhang, J., et al. (2017) PFKFB3 Promotes Proliferation, Migration and Angiogenesis in Nasopharyngeal Carcinoma. Journal of Cancer, 8, 3887-3896.
https://doi.org/10.7150/jca.19112
[49]  Chan, Y., Zhang, H., Liu, P., Tsao, S., Lung, M.L., Mak, N., et al. (2015) Proteomic Analysis of Exosomes from Nasopharyngeal Carcinoma Cell Identifies Intercellular Transfer of Angiogenic Proteins. International Journal of Cancer, 137, 1830-1841.
https://doi.org/10.1002/ijc.29562
[50]  Fang, J., Ge, X., Xu, W., Xie, J., Qin, Z., Shi, L., et al. (2019) Bioinformatics Analysis of the Prognosis and Biological Significance of HMGB1, HMGB2, and HMGB3 in Gastric Cancer. Journal of Cellular Physiology, 235, 3438-3446.
https://doi.org/10.1002/jcp.29233
[51]  Zhong, X., Zhang, S., Zhang, Y., Jiang, Z., Li, Y., Chang, J., et al. (2021) HMGB3 Is Associated with an Unfavorable Prognosis of Neuroblastoma and Promotes Tumor Progression by Mediating TPX2. Frontiers in Cell and Developmental Biology, 9, Article 769547.
https://doi.org/10.3389/fcell.2021.769547
[52]  Zhang, K., Liu, D., Zhao, J., Shi, S., He, X., Da, P., et al. (2021) Nuclear Exosome HMGB3 Secreted by Nasopharyngeal Carcinoma Cells Promotes Tumour Metastasis by Inducing Angiogenesis. Cell Death & Disease, 12, Article No. 554.
https://doi.org/10.1038/s41419-021-03845-y
[53]  Li, D., Chen, X., Wang, L., Wang, J., Li, J., Zhou, Z., et al. (2022) Exosomal HMGA2 Protein from EBV-Positive NPC Cells Destroys Vascular Endothelial Barriers and Induces Endothelial-to-Mesenchymal Transition to Promote Metastasis. Cancer Gene Therapy, 29, 1439-1451.
https://doi.org/10.1038/s41417-022-00453-6
[54]  Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005) The Biology of Vascular Endothelial Growth Factors. Cardiovascular Research, 65, 550-563.
https://doi.org/10.1016/j.cardiores.2004.12.002
[55]  Chen, X., Weng, Y., Li, Y., Fu, W., Huang, Z., Pan, Y., et al. (2022) Upregulation of PNCK Promotes Metastasis and Angiogenesis via Activating NF-κB/VEGF Pathway in Nasopharyngeal Carcinoma. Journal of Oncology, 2022, Article ID: 8541582.
https://doi.org/10.1155/2022/8541582
[56]  Ferreira, I.G., Pucca, M.B., Oliveira, I.S.d., Cerni, F.A., Jacob, B.d.C.d.S. and Arantes, E.C. (2021) Snake Venom Vascular Endothelial Growth Factors (svVEGFs): Unravelling Their Molecular Structure, Functions, and Research Potential. Cytokine & Growth Factor Reviews, 60, 133-143.
https://doi.org/10.1016/j.cytogfr.2021.05.003
[57]  Ahmad, A. and Nawaz, M.I. (2022) Molecular Mechanism of VEGF and Its Role in Pathological Angiogenesis. Journal of Cellular Biochemistry, 123, 1938-1965.
https://doi.org/10.1002/jcb.30344
[58]  Al Kawas, H., Saaid, I., Jank, P., Westhoff, C.C., Denkert, C., Pross, T., et al. (2022) How VEGF-A and Its Splice Variants Affect Breast Cancer Development—Clinical Implications. Cellular Oncology, 45, 227-239.
https://doi.org/10.1007/s13402-022-00665-w
[59]  Zhou, T., Zhao, S., Tang, S., Wang, Y., Wu, R., Zeng, X., et al. (2023) Guggulsterone Promotes Nasopharyngeal Carcinoma Cells Exosomal Circfip1L1 to Mediate miR-125a-5p/VEGFA Affecting Tumor Angiogenesis. Current Molecular Pharmacology, 16, 870-880.
https://doi.org/10.2174/1874467216666230111112116
[60]  wu, A., Luo, N., Xu, y., Du, N., Li, L. and Liu, Q. (2022) Exosomal LBH Inhibits Epithelial-Mesenchymal Transition and Angiogenesis in Nasopharyngeal Carcinoma via Downregulating VEGFA Signaling. International Journal of Biological Sciences, 18, 242-260.
https://doi.org/10.7150/ijbs.66506
[61]  Wang, J., Jiang, Q., Faleti, O.D., Tsang, C., Zhao, M., Wu, G., et al. (2020) Exosomal Delivery of Antagomirs Targeting Viral and Cellular MicroRNAs Synergistically Inhibits Cancer Angiogenesis. Molecular TherapyNucleic Acids, 22, 153-165.
https://doi.org/10.1016/j.omtn.2020.08.017
[62]  Tian, X., Liu, Y., Wang, Z. and Wu, S. (2021) miR-144 Delivered by Nasopharyngeal Carcinoma-Derived Evs Stimulates Angiogenesis through the FBXW7/HIF-1α/VEGF-A Axis. Molecular TherapyNucleic Acids, 24, 1000-1011.
https://doi.org/10.1016/j.omtn.2021.03.016
[63]  Duan, B., Shi, S., Yue, H., You, B., Shan, Y., Zhu, Z., et al. (2019) Exosomal miR-17-5p Promotes Angiogenesis in Nasopharyngeal Carcinoma via Targeting BAMBI. Journal of Cancer, 10, 6681-6692.
https://doi.org/10.7150/jca.30757
[64]  Reda El Sayed, S., Cristante, J., Guyon, L., Denis, J., Chabre, O. and Cherradi, N. (2021) MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers, 13, Article No. 2680.
https://doi.org/10.3390/cancers13112680
[65]  Zhang, C., Chen, W., Pan, S., Zhang, S., Xie, H., Zhang, Z., et al. (2023) SEVs-Mediated miR-6750 Transfer Inhibits Pre-Metastatic Niche Formation in Nasopharyngeal Carcinoma by Targeting M6PR. Cell Death Discovery, 9, Article No. 2.
https://doi.org/10.1038/s41420-022-01262-4
[66]  Xie, L., Zhang, K., You, B., Yin, H., Zhang, P., Shan, Y., et al. (2023) Hypoxic Nasopharyngeal Carcinoma‐Derived Exosomal miR-455 Increases Vascular Permeability by Targeting ZO‐1 to Promote Metastasis. Molecular Carcinogenesis, 62, 803-819.
https://doi.org/10.1002/mc.23525
[67]  Krotofil, M., Tota, M., Siednienko, J. and Donizy, P. (2024) Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers, 16, Article No. 3539.
https://doi.org/10.3390/cancers16203539
[68]  Xu, S., Bai, J., Zhuan, Z., Li, B., Zhang, Z., Wu, X., et al. (2018) EBVLMP1 Is Involved in Vasculogenic Mimicry Formation via VEGFA/VEGFR1 Signaling in Nasopharyngeal Carcinoma. Oncology Reports, 40, 377-384.
https://doi.org/10.3892/or.2018.6414
[69]  Wang, J., Liu, Y., Zhang, Y., Li, X., Fang, M. and Qian, D. (2023) Targeting Exosomes Enveloped EBV-miR-BART1-5p-antagomiRs for NPC Therapy through Both Anti-Vasculogenic Mimicry and Anti‐Angiogenesis. Cancer Medicine, 12, 12608-12621.
https://doi.org/10.1002/cam4.5941
[70]  Zhong, Q., Nie, Q., Wu, R. and Huang, Y. (2023) Exosomal miR-18a-5p Promotes EMT and Metastasis of NPC Cells via Targeting BTG3 and Activating the Wnt/β-Catenin Signaling Pathway. Cell Cycle, 22, 1544-1562.
https://doi.org/10.1080/15384101.2023.2216508
[71]  Li, J., Zhang, G., Liu, C., Xiang, X., Le, M.T.N., Sethi, G., et al. (2022) The Potential Role of Exosomal circRNAs in the Tumor Microenvironment: Insights into Cancer Diagnosis and Therapy. Theranostics, 12, 87-104.
https://doi.org/10.7150/thno.64096
[72]  Zhang, S., Cai, J., Ji, Y., Zhou, S., Miao, M., Zhu, R., et al. (2022) Tumor-Derived Exosomal lincRNA ROR Promotes Angiogenesis in Nasopharyngeal Carcinoma. Molecular and Cellular Probes, 66, Article ID: 101868.
https://doi.org/10.1016/j.mcp.2022.101868
[73]  Yang, W., Tan, S., Yang, L., Chen, X., Yang, R., Oyang, L., et al. (2022) Exosomal miR-205-5p Enhances Angiogenesis and Nasopharyngeal Carcinoma Metastasis by Targeting Desmocollin-2. Molecular TherapyOncolytics, 24, 612-623.
https://doi.org/10.1016/j.omto.2022.02.008
[74]  Lu, J., Liu, Q., Wang, F., Tan, J., Deng, Y., Peng, X., et al. (2018) Exosomal miR-9 Inhibits Angiogenesis by Targeting MDK and Regulating PDK/AKT Pathway in Nasopharyngeal Carcinoma. Journal of Experimental & Clinical Cancer Research, 37, Article No. 147.
https://doi.org/10.1186/s13046-018-0814-3
[75]  Zhou, S.K., Gao, F., Zhong, Z.S. and Yao, H. (2020) Long Non-Coding RNA Colon Cancer Associated Transcript-2 from Nasopharyngeal Carcinoma-Derived Exosomes Promotes Angiogenesis. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 55, 944-951.
https://doi.org/10.3760/cma.j.cn115330-20200423-00322
[76]  Chen, X., Li, D., Huang, Z., Zhong, S. and Cai, L. (2020) Effect of Exosomes Derived from Human Epstein-Barr Virus-Positive Nasopharyngeal Carcinoma Cells on Lymphangiogenesis and Lymph Node Metastasis. Journal of Southern Medical University, 40, 1776-1783.
https://doi.org/10.12122/j.issn.1673-4254.2020.12.12
[77]  Cheng, S., Li, Z., He, J., Fu, S., Duan, Y., Zhou, Q., et al. (2019) Epstein-Barr Virus Noncoding RNAs from the Extracellular Vesicles of Nasopharyngeal Carcinoma (NPC) Cells Promote Angiogenesis via TLR3/RIG-I-Mediated VCAM-1 Expression. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 1201-1213.
https://doi.org/10.1016/j.bbadis.2019.01.015
[78]  Bao, L., You, B., Shi, S., Shan, Y., Zhang, Q., Yue, H., et al. (2018) Metastasis-Associated miR-23a from Nasopharyngeal Carcinoma-Derived Exosomes Mediates Angiogenesis by Repressing a Novel Target Gene TSGA10. Oncogene, 37, 2873-2889.
https://doi.org/10.1038/s41388-018-0183-6
[79]  Liu, J., Liu, Y., Yang, C., Liu, J. and Hao, J. (2023) Comprehensive Analysis for the Immune Related Biomarkers of Platinum-Based Chemotherapy in Ovarian Cancer. Translational Oncology, 37, Article ID: 101762.
https://doi.org/10.1016/j.tranon.2023.101762
[80]  Mondal, P. and Meeran, S.M. (2021) microRNAs in Cancer Chemoresistance: The Sword and the Shield. Non-Coding RNA Research, 6, 200-210.
https://doi.org/10.1016/j.ncrna.2021.12.001
[81]  Zhao, S., Tang, Y., Wang, R. and Najafi, M. (2022) Mechanisms of Cancer Cell Death Induction by Paclitaxel: An Updated Review. Apoptosis, 27, 647-667.
https://doi.org/10.1007/s10495-022-01750-z
[82]  Mahabady, M.K., Mirzaei, S., Saebfar, H., Gholami, M.H., Zabolian, A., Hushmandi, K., et al. (2022) Noncoding RNAs and Their Therapeutics in Paclitaxel Chemotherapy: Mechanisms of Initiation, Progression, and Drug Sensitivity. Journal of Cellular Physiology, 237, 2309-2344.
https://doi.org/10.1002/jcp.30751
[83]  Yan, J., Wu, L., Zheng, M. and Pan, F. (2024) Exosome-Mediated Transfer of ALDH2 in Nasopharyngeal Carcinoma Cells Confers Increased Resistance to Paclitaxel Treatment. Discovery Medicine, 36, 1210-1220.
https://doi.org/10.24976/discov.med.202436185.111
[84]  Yuan, F. and Zhou, Z.F. (2021) Exosomes Derived from Taxol-Resistant Nasopharyngeal Carcinoma (NPC) Cells Transferred DDX53 to NPC Cells and Promoted Cancer Resistance to Taxol. European Review for Medical and Pharmacological Sciences, 25, 127-138.
https://doi.org/10.26355/eurrev_202101_24375
[85]  Cui, X., Chen, Y., Zhao, L. and Ding, X. (2023) Extracellular Vesicles Derived from Paclitaxel-Sensitive Nasopharyngeal Carcinoma Cells Deliver miR-183-5p and Impart Paclitaxel Sensitivity through a Mechanism Involving P-gp. Cell Biology and Toxicology, 39, 2953-2970.
https://doi.org/10.1007/s10565-023-09812-x
[86]  Mondal, P. and Meeran, S.M. (2023) Emerging Role of Non-Coding RNAs in Resistance to Platinum-Based Anti-Cancer Agents in Lung Cancer. Frontiers in Pharmacology, 14, Article 1105484.
https://doi.org/10.3389/fphar.2023.1105484
[87]  Ai, J., Tan, G., Li, W., Liu, H., Li, T., Zhang, G., et al. (2022) Exosomes Loaded with circPARD3 Promotes EBV-miR-BART4-Induced Stemness and Cisplatin Resistance in Nasopharyngeal Carcinoma Side Population Cells through the miR-579-3p/SIRT1/SSRP1 Axis. Cell Biology and Toxicology, 39, 537-556.
https://doi.org/10.1007/s10565-022-09738-w
[88]  Xia, T., Tian, H., Zhang, K., Zhang, S., Chen, W., Shi, S., et al. (2021) Exosomal ERp44 Derived from Er-Stressed Cells Strengthens Cisplatin Resistance of Nasopharyngeal Carcinoma. BMC Cancer, 21, Article No. 1003.
https://doi.org/10.1186/s12885-021-08712-9
[89]  Li, J., Hu, C., Chao, H., Zhang, Y., Li, Y., Hou, J., et al. (2021) Exosomal Transfer of miR-106a-5p Contributes to Cisplatin Resistance and Tumorigenesis in Nasopharyngeal Carcinoma. Journal of Cellular and Molecular Medicine, 25, 9183-9198.
https://doi.org/10.1111/jcmm.16801
[90]  Qin, X., Guo, H., Wang, X., Zhu, X., Yan, M., Wang, X., et al. (2019) Exosomal miR-196a Derived from Cancer-Associated Fibroblasts Confers Cisplatin Resistance in Head and Neck Cancer through Targeting CDKN1B and ING5. Genome Biology, 20, Article No. 12.
https://doi.org/10.1186/s13059-018-1604-0
[91]  Krishnaraj, J., Yamamoto, T. and Ohki, R. (2023) P53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers, 15, Article No. 3399.
https://doi.org/10.3390/cancers15133399
[92]  Li, W., Xing, X., Shen, C. and Hu, C. (2024) Tumor Cell-Derived Exosomal miR-193b-3p Promotes Tumor-Associated Macrophage Activation to Facilitate Nasopharyngeal Cancer Cell Invasion and Radioresistances. Heliyon, 10, e30808.
https://doi.org/10.1016/j.heliyon.2024.e30808
[93]  Zhu, C., Jiang, X., Xiao, H. and Guan, J. (2022) Tumor-Derived Extracellular Vesicles Inhibit HGF/c-Met and EGF/EGFR Pathways to Accelerate the Radiosensitivity of Nasopharyngeal Carcinoma Cells via microRNA-142-5p Delivery. Cell Death Discovery, 8, Article No. 17.
https://doi.org/10.1038/s41420-021-00794-5
[94]  Wang, X., Xiang, Z., Zhang, Y., Tu, C.R., Huang, C., Chung, Y., et al. (2025) CD25 Downregulation by Tumor Exosomal microRNA-15a Promotes Interleukin-17-Producing γδ-T-Cells-Mediated Radioresistance in Nasopharyngeal Carcinoma. MedComm, 6, e70078.
https://doi.org/10.1002/mco2.70078
[95]  Luo, Y., Ma, J., Liu, F., Guo, J. and Gui, R. (2020) Diagnostic Value of Exosomal circMYC in Radioresistant Nasopharyngeal Carcinoma. Head & Neck, 42, 3702-3711.
https://doi.org/10.1002/hed.26441
[96]  Wan, F., Chen, K., Sun, Y., Chen, X., Liang, R., Chen, L., et al. (2020) Exosomes Overexpressing miR-34c Inhibit Malignant Behavior and Reverse the Radioresistance of Nasopharyngeal Carcinoma. Journal of Translational Medicine, 18, Article No. 12.
https://doi.org/10.1186/s12967-019-02203-z
[97]  Huang, T., Yin, L., Wu, J., Gu, J., Wu, J., Chen, D., et al. (2016) MicroRNA-19b-3p Regulates Nasopharyngeal Carcinoma Radiosensitivity by Targeting TNFAIP3/NF-κB Axis. Journal of Experimental & Clinical Cancer Research, 35, Article No. 188.
https://doi.org/10.1186/s13046-016-0465-1
[98]  Huang, S., Xu, M., Deng, X., Da, Q., Li, M., et al. (2024) Anti Irradiation Nanoparticles Shelter Immune Organ from Radio-Damage via Preventing the IKK/IκB/NF-κB Activation. Molecular Cancer, 23, Article No. 234.
https://doi.org/10.1186/s12943-024-02142-4
[99]  Liu, Y., Wen, J. and Huang, W. (2021) Exosomes in Nasopharyngeal Carcinoma. Clinica Chimica Acta, 523, 355-364.
https://doi.org/10.1016/j.cca.2021.10.013
[100]  Yang, J., Chen, J., Liang, H. and Yu, Y. (2022) Nasopharyngeal Cancer Cell-Derived Exosomal PD-L1 Inhibits CD8+ T-Cell Activity and Promotes Immune Escape. Cancer Science, 113, 3044-3054.
https://doi.org/10.1111/cas.15433
[101]  Wang, X., Zhang, Y., Mu, X., Tu, C.R., Chung, Y., Tsao, S.W., et al. (2022) Exosomes Derived from γδ-T Cells Synergize with Radiotherapy and Preserve Antitumor Activities against Nasopharyngeal Carcinoma in Immunosuppressive Microenvironment. Journal for ImmunoTherapy of Cancer, 10, e003832.
https://doi.org/10.1136/jitc-2021-003832
[102]  Ye, S., Zhang, H., Cai, T., Liu, Y., Ni, J., He, J., et al. (2016) Exosomal miR-24-3p Impedes T-Cell Function by Targeting fgf11 and Serves as a Potential Prognostic Biomarker for Nasopharyngeal Carcinoma. The Journal of Pathology, 240, 329-340.
https://doi.org/10.1002/path.4781
[103]  Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A., Mustapha, R., Niki, T., et al. (2014) Effect of Nasopharyngeal Carcinoma-Derived Exosomes on Human Regulatory T Cells. JNCI: Journal of the National Cancer Institute, 107, Article No. 363.
https://doi.org/10.1093/jnci/dju363
[104]  Klibi, J., Niki, T., Riedel, A., Pioche-Durieu, C., Souquere, S., Rubinstein, E., et al. (2009) Blood Diffusion and Th1-Suppressive Effects of Galectin-9-Containing Exosomes Released by Epstein-Barr Virus-Infected Nasopharyngeal Carcinoma Cells. Blood, 113, 1957-1966.
https://doi.org/10.1182/blood-2008-02-142596
[105]  Lee, P., Sui, Y., Liu, T., Tsang, N., Huang, C., Lin, T., et al. (2022) Epstein-Barr Viral Product-Containing Exosomes Promote Fibrosis and Nasopharyngeal Carcinoma Progression through Activation of YAP1/FAPα Signaling in Fibroblasts. Journal of Experimental & Clinical Cancer Research, 41, Article No. 254.
https://doi.org/10.1186/s13046-022-02456-5
[106]  Gurtsevitch, V.E., Senyuta, N.B., Ignatova, A.V., Lomaya, M.V., Kondratova, V.N., Pavlovskaya, A.I., et al. (2017) Epstein-Barr Virus Biomarkers for Nasopharyngeal Carcinoma in Non-Endemic Regions. Journal of General Virology, 98, 2118-2127.
https://doi.org/10.1099/jgv.0.000889
[107]  Zheng, W., Ye, W., Wu, Z., Huang, X., Xu, Y., Chen, Q., et al. (2021) Identification of Potential Plasma Biomarkers in Early-Stage Nasopharyngeal Carcinoma-Derived Exosomes Based on RNA Sequencing. Cancer Cell International, 21, Article No. 185.
https://doi.org/10.1186/s12935-021-01881-4
[108]  Zhang, H., Zou, X., Wu, L., Zhang, S., Wang, T., Liu, P., et al. (2019) Identification of a 7-microRNA Signature in Plasma as Promising Biomarker for Nasopharyngeal Carcinoma Detection. Cancer Medicine, 9, 1230-1241.
https://doi.org/10.1002/cam4.2676
[109]  Jiang, L., Zhang, Y., Li, B., Kang, M., Yang, Z., Lin, C., et al. (2021) miRNAs Derived from Circulating Small Extracellular Vesicles as Diagnostic Biomarkers for Nasopharyngeal Carcinoma. Cancer Science, 112, 2393-2404.
https://doi.org/10.1111/cas.14883
[110]  Zou, X., Zhu, D., Zhang, H., Zhang, S., Zhou, X., He, X., et al. (2020) MicroRNA Expression Profiling Analysis in Serum for Nasopharyngeal Carcinoma Diagnosis. Gene, 727, Article ID: 144243.
https://doi.org/10.1016/j.gene.2019.144243
[111]  Hu, Y., Tian, Y., Di, H., Xue, C., Zheng, Y., Hu, B., et al. (2022) Noninvasive Diagnosis of Nasopharyngeal Carcinoma Based on Phenotypic Profiling of Viral and Tumor Markers on Plasma Extracellular Vesicles. Analytical Chemistry, 94, 9740-9749.
https://doi.org/10.1021/acs.analchem.2c01311
[112]  Cui, Z., Lin, Y., Hu, D., Wu, J., Peng, W. and Chen, Y. (2021) Diagnostic and Prognostic Potential of Circulating and Tissue BATF2 in Nasopharyngeal Carcinoma. Frontiers in Molecular Biosciences, 8, Article 724373.
https://doi.org/10.3389/fmolb.2021.724373
[113]  Ramayanti, O., Verkuijlen, S.A.W.M., Novianti, P., Scheepbouwer, C., Misovic, B., Koppers‐Lalic, D., et al. (2018) Vesicle-Bound EBV-BART13-3p miRNA in Circulation Distinguishes Nasopharyngeal from Other Head and Neck Cancer and Asymptomatic EBV‐Infections. International Journal of Cancer, 144, 2555-2566.
https://doi.org/10.1002/ijc.31967
[114]  Liu, W., Li, J., Wu, Y., Xing, S., Lai, Y. and Zhang, G. (2018) Target-Induced Proximity Ligation Triggers Recombinase Polymerase Amplification and Transcription-Mediated Amplification to Detect Tumor-Derived Exosomes in Nasopharyngeal Carcinoma with High Sensitivity. Biosensors and Bioelectronics, 102, 204-210.
https://doi.org/10.1016/j.bios.2017.11.033
[115]  Zhou, S., da Silva, S.D., Siegel, P.M. and Philip, A. (2019) CD109 Acts as a Gatekeeper of the Epithelial Trait by Suppressing Epithelial to Mesenchymal Transition in Squamous Cell Carcinoma Cells in Vitro. Scientific Reports, 9, Article No. 16317.
https://doi.org/10.1038/s41598-019-50694-z
[116]  Xie, C., Ji, N., Tang, Z., Li, J. and Chen, Q. (2019) The Role of Extracellular Vesicles from Different Origin in the Microenvironment of Head and Neck Cancers. Molecular Cancer, 18, Article No. 83.
https://doi.org/10.1186/s12943-019-0985-3
[117]  Li, H., Xu, W., Li, F., Zeng, R., Zhang, X., Wang, X., et al. (2022) Amplification of Anticancer Efficacy by Co-Delivery of Doxorubicin and Lonidamine with Extracellular Vesicles. Drug Delivery, 29, 192-202.
https://doi.org/10.1080/10717544.2021.2023697
[118]  Liu, J., Zhu, M. and Tang, Q. (2021) Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomal microRNA-181a Retards Nasopharyngeal Carcinoma Development by Mediating KDM5C. Journal of Cancer Research and Clinical Oncology, 147, 2867-2877.
https://doi.org/10.1007/s00432-021-03684-6
[119]  Shi, S., Zhang, Q., Xia, Y., You, B., Shan, Y., Bao, L., et al. (2016) Mesenchymal Stem Cell-Derived Exosomes Facilitate Nasopharyngeal Carcinoma Progression. American Journal of Cancer Research, 6, 459-472.
[120]  Guo, Z., Su, W., Zhou, R., Zhang, G., Yang, S., Wu, X., et al. (2021) Exosomal MATN3 of Urine‐Derived Stem Cells Ameliorates Intervertebral Disc Degeneration by Antisenescence Effects and Promotes NPC Proliferation and ECM Synthesis by Activating TGF-β. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5542241.
https://doi.org/10.1155/2021/5542241
[121]  Wan, F., Zhang, H., Hu, J., Chen, L., Geng, S., Kong, L., et al. (2022) Mesenchymal Stem Cells Inhibits Migration and Vasculogenic Mimicry in Nasopharyngeal Carcinoma via Exosomal MiR-125a. Frontiers in Oncology, 12, Article 781979.
https://doi.org/10.3389/fonc.2022.781979
[122]  Dochi, H., Kondo, S., Komura, S., Moriyama‐Kita, M., Komori, T., Nanbo, A., et al. (2023) Peritumoral SPARC Expression Induced by Exosomes from Nasopharyngeal Carcinoma Infected Epstein‐Barr Virus: A Poor Prognostic Marker. International Journal of Cancer, 154, 895-911.
https://doi.org/10.1002/ijc.34777
[123]  Chiang, C.L., Lam, T.C., Li, J.C.B., Chan, K.S.K., El Helali, A., Lee, Y.Y.P., et al. (2023) Efficacy, Safety, and Correlative Biomarkers of Bintrafusp Alfa in Recurrent or Metastatic Nasopharyngeal Cancer Patients: A Phase II Clinical Trial. The Lancet Regional HealthWestern Pacific, 40, Article ID: 100898.
https://doi.org/10.1016/j.lanwpc.2023.100898
[124]  Liu, L., Zuo, L., Yang, J., Xin, S., Zhang, J., Zhou, J., et al. (2019) Exosomal Cyclophilin a as a Novel Noninvasive Biomarker for Epstein-Barr Virus Associated Nasopharyngeal Carcinoma. Cancer Medicine, 8, 3142-3151.
https://doi.org/10.1002/cam4.2185
[125]  Zuo, L., Xie, Y., Tang, J., Xin, S., Liu, L., Zhang, S., et al. (2019) Targeting Exosomal EBV-LMP1 Transfer and Mir-203 Expression via the NF-κB Pathway: The Therapeutic Role of Aspirin in NPC. Molecular TherapyNucleic Acids, 17, 175-184.
https://doi.org/10.1016/j.omtn.2019.05.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133