Soil geomorphology deals with scientific experiments on different interdependent parameters of soil and landforms. The objectives are to discover the various attributes of soil and geomorphology and their interrelationship. Another objective is to determine the relationship between the character of soil geomorphology and the attributes of land use and land cover. SRTM and ALOS data are used to prepare an accurate DEM for analysis of the morphology and topography of this region. The LULC map is prepared from Landsat 8 satellite imagery through remote sensing software. Ajodhya Hill is situated in the Purulia district of West Bengal. The maximum elevation of the hill is about 698 m above the MSL. Ajodhya Hill is composed of older Archaean rock (granite). The foothill area of Ajodhya Hill has a gentle slope varying between 0? - 5? with a moderately thick soil layer. Much of the hill area is covered by healthy forests. Scattered vegetation, fallow land, and agricultural activity are found in the foothill pediment area. Sandy loam is the principal soil texture. Soil pH is primarily neutral. Most soil samples have a 32 - 95 μS/cm salinity level. Surface soils are dry, having about 0.1 - 3 percent soil moisture. This area is dry and only fed by rainfall during the monsoon season. Local people store water by creating an artificial reservoir for agriculture and household purposes. Sustainable management of resources is beneficial for that region.
References
[1]
Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agriculture, Ecosystems & Environment, 90, 25-45. https://doi.org/10.1016/s0167-8809(01)00174-8
[2]
Baidya, T. K. (1984). A New Approach to Pre-Cambrian Geology and Mineral Prospecting in Puruliya District, West Bengal. Journal Mines, Metals and Fuels,32, 570-574.
[3]
Bandyopadhyay, S., Sekhar Kar, N., Das, S., & Sen, J. (2014). River Systems and Water Resources of West Bengal: A Review. In R. Vaidyanadhan (Ed.), Water Resources (pp. 63-84). Geological Society of India. https://doi.org/10.17491/cgsi/2014/62893
[4]
Bhattacharya, B. K., Chakraborty, B. R., Sen, N. N., Mukherji, S., Ray, P., Sengupta, S., Sengupta, K. S., Sen, N. N., & Maity, T. (1985). West Bengal District Gazetteers: Puruliya. Government of West Bengal.
[5]
Bhattacharya, B. P. (1990). Mantle Petrogeny Related to Tectonic Evolution of the Chhotanagpur Region, E. India. Bulletin Geological, Mining and Metallurgical Society of India, 56, 13-14.
[6]
Bhattacharya, D. S. & Ghoshal, A. (1992). Petrofabric Patterns of the Chhotanagpur Gneiss and the Adjoining Schists of the Singhbhum Group. Indian Journal of Geology, 64, 196-209.
[7]
Birkeland, P. W. (1974). Pedology, Weathering, and Geomorphological Research. Oxford University Press.
[8]
Birkeland, P. W. (1990). Soil-Geomorphic Research—A Selective Overview. Geomorphology, 3, 207-224. https://doi.org/10.1016/0169-555x(90)90004-a
[9]
Birkeland, P. W. (1999) Soil and Geomorphology (3rd ed.). Oxford University Press.
[10]
Bose, M. K. (1992). Chhotanagpur Granite Gneissic Complex of Eastern Indian Shield: Problems and Prospects. Indian Journal of Geology, 64, 151-159.
[11]
Bose, R. N. (1957). The Metamorphic Rocks around Barabhum and Bundnan, South Manbhum. Quarterly Journal of Geological, Mining and Metallurgical Society of India, 29, 19-36.
[12]
Carlson, T. N., & Sanchez-Azofeifa, G. A. (1999). Satellite Remote Sensing of Land Use Changes in and around San José, Costa Rica. Remote Sensing of Environment, 70, 247-256. https://doi.org/10.1016/s0034-4257(99)00018-8
[13]
Chatterjee, S. (2005). Pedogeomorphology of Some Districts of West Bengal with Application of Models. PhD Thesis, The University of Burdwan.
[14]
Chatterjee, S., De, N. K (2009) Pedogeomorphological Model and Land Evolution. In V. S. Kale, & H. S. Sharma (Ed.), Geomorphology of India (Prof. Savindra Singh Felicitation Volume, pp. 547-563). Prayag Pustak Bhaban.
[15]
Chaudhuri, R. N. (1982). Morpho-Edaphic Analysis of the Bhagirathi-Alakananda Basin of the Garhwal Himalaya. Geographical Review of India, 44, 44-51.
[16]
Coacher, A. J., & Dalrymple, J. B. (1977). The Nine-Unit Land Surface Model: An Approach to Pedogeomorphic Reaches. An International Journal of Soil Science, Geoderma, 18, 127-144.
[17]
Conacher, A. J., & Dalrymple, J. B. (1977). The Nine-Unit Land Surface Model: An Approach to Pe-Dogeomorphic Research. Geoderma, 18, 1-154.
[18]
Daniels, R. B., & Hammer, R. D. (1971). Soil Geomorphology, Wiley.
[19]
Daniels, R. B., Gamble, E. E., & Cady, J. G. (1971). The Relation between Geomorphology and Soil Morphology and Genesis. Advances in Agronomy, 23, 51-88. https://doi.org/10.1016/s0065-2113(08)60150-9
[20]
Das, P., & Basu, S. (2014). Soils and Soils of India, Grantha Tirtha Publisher and Booksellers, 78-93.
[21]
Das, T., Sarkar, D., Chattopadhyay, T., Dutta, D., Singh, D. S., Mukhopadhyay, S. et al. (2010). Soils of Puriliya District, West Bengal for Optimizing LandUse. NBSS & LUP.
[22]
Dasgupta, P. (2015). Rock Characteristics and Susceptibility to Weathering: A Study in the Metamorphic Terrain of Ajodhya Hill, West Bengal. Journal of Indian Geomorphology, 3, 27-47.
[23]
De, N. K. (1972). Measuring Soil and Landform Characteristics of Parts of Banka Basin, Burdwan. In Proceedings Symposium on Geomorphology, Geohydrology (pp. 46-58). Geotectonic of the Lower Gang Basin IIT.
[24]
De, N. K. (1984a). Pedogeomorphology. A Concept in Earth Science. Burdwan University Journal of Science, 1, 18-25.
[25]
De, N. K. (1984b). Measuring Land Potentials in Developing Countries. The University of Burdwan.
[26]
De, N. K., & Ghosh, P. (1986). India, a Study of Soil Geography. Sribhumi Publishing company.
[27]
Demers, M. N. (2005). Fundamentals of Geographic Information Systems. John Wiley Sons, Inc.
[28]
Dey, B., & De, N. K. (1988). Pedogeomorphological Study in Lower Bengal Basin, India with Land MSS Data. Land Scape System and Ecological Studies, 11, 110-120.
[29]
Dhankar, R. P., & Jain, S. P. (1985). Landscape Soil Relationship in Gazipur District. Geo-Graphical Review of India, 47, 42-46.
[30]
Elizald, G., & Jaimes, E. (1989) Proposal for a Pedogeomorphological Model. Revista Geografica, Venezolana,30, 5-36.
[31]
Eppes, M. C. (2009). Introducing Field-Based Geologic Research Using Soil Geomorphology. Journal of Geoscience Education, 57, 11-22. https://doi.org/10.5408/1.3544222
[32]
Gao, B. (1996). NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58, 257-266. https://doi.org/10.1016/s0034-4257(96)00067-3
[33]
Gelman, F., Binstock, P., & Halicz, L. (2011). Application of the Walkley-Black Titration for Organic Carbon Quantification in Organic-Rich Sedimentary Rocks. Report GSI/13/2011, Geological Survey of Israel. http://www.gsi.gov.il/_Uploads/ftp/GsiReport/2011/Gelman-Faina-GSI-13-2011.pdf
[34]
Gerrard, J. (1993). Soil Geomorphology—Present Dilemmas and Future Challenges. Geomorphology, 7, 61-84. https://doi.org/10.1016/0169-555x(93)90012-q
[35]
Gerrard, J. (1995). Soil Geomorphology, an Integration of Pedology and Geomorphology (pp. 29-50). Chapman & Hall.
[36]
Ghosh, A., & Mukhopadhyay, S. (2022). Evaluation of Springs and Waterfalls as Geomorphosites and Proposition of Strategies to Develop Geotourism at Ajodhya Hill, Puruliya District, Eastern India. GeoJournal, 87, 1047-1067. https://doi.org/10.1007/s10708-020-10298-x
[37]
Ghosh, A., Mandal, R., & Chakrabarty, P. (2023). Inclusive Tourism Adopted to Geosites: A Study in the Ajodhya Hills of West Bengal in India. Tourism and Hospitality, 4, 321-335. https://doi.org/10.3390/tourhosp4020020
[38]
Goswami, A., & Das, A. L. (1984). Impact of Landscape on Soils—A Case Study of Bankura District (West Bengal). Geographical Review of India, 46, 51-57.
[39]
Goudie, A. S. (2003). Encyclopedia of Geomorphology. Routledge Publication.
[40]
GSI: Geological Survey of India (1999). Geology and Mineral Resources of the States of India, Pt. 1: West Bengal.
[41]
Hall, G. F. (1983). Pedology and Geomorphology. Developments in Soil Science, 11, 117-140. https://doi.org/10.1016/s0166-2481(08)70600-7
[42]
Hall, G. F., & Olson, C. G. (2015). Predicting Variability of Soils from Landscape Models. In M. J. Mausbach, & L. P. Wilding (Eds.), SSSA Special Publications (pp. 9-24). Soil Science Society of America. https://doi.org/10.2136/sssaspecpub28.c2
[43]
Kumar, A. (1979). Geomorphology of Simdega and Its Adjoining Area, Bihar. (pp. 18-22). The National Geographic Society of India.
[44]
Legros, J. P. (1996). Soil Maps, from Spatial Analysis to Land Management. Presses techniques.
[45]
Li, W., Liu, X.-J., Khan, M. A., & Gul, B. (2000). Relationship between Soil Characteristics and Halophytic Vegetation in the Coastal Region of North China. Pakistan Journal of Botany (Pakistan), 40, 1081-1090.
[46]
Lillisand, T. M., Kiffer, R. W., & Chapman, J. W. (2010). Remote Sensing and Image Interpretation (5th ed.). Wiley.
[47]
Lisi, P. J., Schindler, D. E., Bentley, K. T., & Pess, G. R. (2013). Association between Geomorphic Attributes of Watersheds, Water Temperature, and Salmon Spawn Timing in Alaskan Streams. Geomorphology, 185, 78-86. https://doi.org/10.1016/j.geomorph.2012.12.013
[48]
McFadden, L. D., & Knuepfer, P. L. K. (1990). Soil Geomorphology: The Linkage of Pedology and Surficial Processes. Geomorphology, 3, 197-205. https://doi.org/10.1016/0169-555x(90)90003-9
[49]
Monger, H. C., & Bestelmeyer, B. T. (2006). The Soil-Geomorphic Template and Biotic Change in Arid and Semi-Arid Ecosystems. Journal of Arid Environments, 65, 207-218. https://doi.org/10.1016/j.jaridenv.2005.08.012
[50]
Pal, S. S. (1989). A Study in Landform and Soil Relationship in Damodar-Ajoy interfluve, West Bengal. National Seminar, National Atlas and Thematic Mapping Organisation.
[51]
Piper, C. S. (1950). Soil and Plant Analysis. The University of Adelaide.
[52]
Pofali, R. M., & Hirekerur, L. R. (1983). Significance of Geomorphological Analysis for Soil Mapping. Geographical Review of India, 45.
[53]
Pofali, R. M., Bhattacharya, J. C., & Landey, R. J. (1979). Landscape Analysis from Soil Mapping in Basaltic Terrain. Geographical Review of India, 41, 267-276.
[54]
Pouquet, J. (1966). Initiation Geopedology. Les Sol set la geographie, SEDES.
[55]
Prenzel, B. (2004). Remote Sensing-Based Quantification of Land-Cover and Land-Use Change for Planning. Progress in Planning, 61, 281-299. https://doi.org/10.1016/s0305-9006(03)00065-5
[56]
Principi, P. (1953). Geopedologia (Geologia Pedologia). Studio dei terreni naturali er agrari Ramo Editoriale degli Agricoltori.
[57]
Rogan, J., & Chen, D. (2004). Remote Sensing Technology for Mapping and Monitoring Land-Cover and Land-Use Change. Progress in Planning, 61, 301-325. https://doi.org/10.1016/s0305-9006(03)00066-7
[58]
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of 3rd Earth Resources Technology Satellite Symposium (pp. 309-317).
[59]
Ruhe, R. V. (1960). Elements of the Soil Landscape. Transactions of 7th International Congress of Soil Science, 23, 165-169.
[60]
Ruhe, R. V. (1965). Quaternary Paleopedology. In H. E. Wright, & D. G. Frey (Eds.), The Quaternary of the U.S. (pp. 755-764). Princeton University Press. https://doi.org/10.1515/9781400876525-048
[61]
Ruhe, R. V. (1969). Quaternary Landscapes in Iowa. Iowa State University Press.
[62]
Ruhe, R. V. (1975). Geomorphology. Houghton Mifflin.
[63]
Ruhe, R. V., & Scholtes, W. H. (1959). Important Elements in the Classification of the Wisconsin Glacial Stage: A Discussion. The Journal of Geology, 67, 585-593. https://doi.org/10.1086/626616
[64]
Ruhe, R. V., & Walker, P. H. (1968) Hillslope Models and Soil Formation. I. Open Systems. Transactions of 9th International Congress of Soil Science, 4, 551-560.
[65]
Ruhe, R. V., Daniels, R. B., & Cady, J. G. (1967). Landscape Evolution and Soil Formation in Southwestern Iowa. USDA Technical Bulletin No. 1349.
[66]
Sarkar, A. (2019a). Soil Geomorphology of Garpanchkot Hill Area and Its Influence on Land Use and Land Cover. Journal of Geoscience and Environment Protection, 7, 108-135. https://doi.org/10.4236/gep.2019.77009
[67]
Sarkar, A. (2019b). Soil Geomorphological Model and Its Relation to Land Use Planning: A Case Study of Biharinath Hill, Bankura District, West Bengal. Indian Journal of Landscape Systems and Ecological Studies, 42.
[68]
Sarkar, A., & Das, P. (2018). Pedogeomorphology of the Plateau Fringe Region of Biharinath Hill, Bankura Districts of West Bengal and Its Influence on Land Use and Land Cover. International Journal of Research and Analytical Reviews, 5, 488-501. http://www.ijrar.org/IJRAR1903707.pdf
[69]
Sarkar, H. K. (1987). Relationship between Geomorphology and Soil in the Mand River Basin, Madhya Pradesh. Geographical Review of India, 49.
[70]
Sarkar, H. K. (1988). Pedogeomorphology of Part of the Mand Basin, Madhya Pradesh, India. Ph.D. Thesis, The University of Burdwan.
[71]
Sato, J. H., de Figueiredo, C. C., Marchão, R. L., Madari, B. E., Benedito, L. E. C., Busato, J. G. et al. (2014). Methods of Soil Organic Carbon Determination in Brazilian Savannah Soils. Scientia Agricola, 71, 302-308. https://doi.org/10.1590/0103-9016-2013-0306
[72]
Schaetzl, R. J., & Anderson, S. (2005). Soils: Genesis and Geomorphology. Cambridge University Press. https://doi.org/10.1017/cbo9780511815560
[73]
Schaetzl, R. J., & Thompson, M. L. (2015). Soils: Genesis and Geomorphology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/cbo9781139061803
[74]
Singh, R. P. (1969). Geomorphological Evolution of Chhotanagpur High Lands, India. National Geographical Society of India.
[75]
Tricart, J. (1965a). Principes et Méthodes de la Géomorphologie. Soil Science, 100, 300. https://doi.org/10.1097/00010694-196510000-00015
[76]
Tricart, J. (1965b). Morphogenèse et pédogenèse. I. Approche méthodologique: Géomor-phologie et pédologie. Science du Sol A, 1, 69-85.
[77]
Tricart, J. (1965c). Principal Methods of Geomorphology. Masson.
[78]
Tricart, J. (1994). Ecogeographie des espaces ruraux. Nathan.
[79]
Tricart, J., & Kilian, J. (1979). L’eco-geographie et l’amanagement du milieu naturel. Editions Maspero.
[80]
Ulbricht, K. A., & Heckendorff, W. D. (1998). Satellite Images for Recognition of Landscape and Landuse Changes. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 235-243. https://doi.org/10.1016/s0924-2716(98)00006-9
[81]
Wu, Q., Li, H., Wang, R., Paulussen, J., He, Y., Wang, M. et al. (2006). Monitoring and Predicting Land Use Change in Beijing Using Remote Sensing and GIS. Landscape and Urban Planning, 78, 322-333. https://doi.org/10.1016/j.landurbplan.2005.10.002
[82]
Wysocki, D. A., Schoeneberger, P. J. Hirmas, D. R., & LaGarry. H. E. (2011). Geomorphology of Soil Landscapes, In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of Soil Science: Properties and Processes (2nd ed., pp. 29.1-29.26). Chemical Rubber Company Press.
[83]
Xu, H. (2006). Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, 3025-3033. https://doi.org/10.1080/01431160600589179
[84]
Zinck, J. A. (2013). Geopedology. ITC Special Lecture Notes Series.
[85]
Zinck, J. A., Metternicht, G., Bocco Verdinelli, G. H. R., & Del Valle, H. F (2016). Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies. Springer.