For a simple undirected graph G, let
be the (0, 1) adjacency matrix of G. The Seidel matrix of G, is defined as
, where J is the all-one matrix and I is the identity matrix. The Seidel eigenvalues polynomial of the graph G is
. If all the Seidel eigenvalues of the graph G are integers, then G is called a Seidel integer graph. In this paper, we apply methods from algebraic and matrix theory to obtain the Seidel eigenvalue polynomials of the Petersen graph. Furthermore, we determine whether the Petersen graph is a Seidel integral graph.
References
[1]
Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London and Elsevier.
[2]
Von Collatz, L. and Sinogowitz, U. (1957) Spektren endlicher grafen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 21, 63-77. https://doi.org/10.1007/bf02941924
[3]
Harary, F. and Schwenk, A.J. (1974) Which Graphs Have Integral Spectra? In: Lecture Notes in Mathematics, Springer, 45-51. https://doi.org/10.1007/bfb0066434
[4]
Lv, S.M. (2008) The Seidel Polynomial and Spectrum of Complete Graphs. JournalofQinghaiNormalUniversity (Natural Science Edition), 4, 7-9.
[5]
Lv, S.M. (2013) Some Results about the Seidel Integral Tree. JournalofQinghaiNormalUniversity (Natural Science Edition), 29, 6-10.
[6]
Van Lint, J.H. and Seidel, J.J. (1991) Equilateral Point Sets in Elliptic Geometry. In: GeometryandCombinatorics, Elsevier, 3-16. https://doi.org/10.1016/b978-0-12-189420-7.50008-6
[7]
Zeng, C.X. (2009) The Principal Eigenvalues of the Seidel Matrix of Graphs. JournalofShaoyangUniversity (Natural Science Edition), 1, 12.
[8]
Wang, L., Zhao, G. and Li, K. (2012) Seidel Integral Complete r-Partite Graphs. Graphs and Combinatorics, 30, 479-493. https://doi.org/10.1007/s00373-012-1276-6
[9]
Berman, A., Shaked-Monderer, N., Singh, R. and Zhang, X. (2019) Complete Multipartite Graphs That Are Determined, up to Switching, by Their Seidel Spectrum. Linear Algebra and its Applications, 564, 58-71. https://doi.org/10.1016/j.laa.2018.11.022
[10]
Greaves, G.R.W. (2018) Equiangular Line Systems and Switching Classes Containing Regular Graphs. Linear Algebra and Its Applications, 536, 31-51. https://doi.org/10.1016/j.laa.2017.09.008
Cvetkovic, D.M., Doob, M. and Sachs, H. (1980) Spectra of Graphs Theory and Application. Deutscher Verlag der Wissenschaften-Academic Press, 29-31.
[13]
Lv, S.M. (2011) The Seidel Polynomial and Spectrum of Complete Four-Partite Graphs. JournalofNorthwestNormalUniversity (Natural Science Edition), 47, 22-25.
[14]
Lv, S.M. (2011) The Seidel Eigenvalues Polynomials and S-Integral Graphs of Some Special Graphs. JournalofQinghaiMinzuUniversityforNationalities (Educational Science Edition), 31, 21-24.
[15]
Zhao, N., Wu, T.Z. and Guo, C.Z. (2013) The Complete Six-Partite Graphs Is a Necessary and Sufficient Condition for an S-Integral Graphs. PureMathematicsandAppliedMathematics, 2, 132-138.
[16]
Huang, Y.D., Di, C.G. and Zhu, S.X. (2002) Matrix Theory and Its Application. University of Science and Technology of China Press.