全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Seidel Eigenvalues Polynomial and Spectrum of the Petersen Graph

DOI: 10.4236/ojapps.2025.154071, PP. 1025-1032

Keywords: Petersen Graph, Seidel Eigenvalues Polynomial, Seidel Spectral, Seidel Integral Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a simple undirected graph G, let A( G ) be the (0, 1) adjacency matrix of G. The Seidel matrix of G, is defined as S( G )=JI2A( G ) , where J is the all-one matrix and I is the identity matrix. The Seidel eigenvalues polynomial of the graph G is S G ( λ )=det( λIS( G ) ) . If all the Seidel eigenvalues of the graph G are integers, then G is called a Seidel integer graph. In this paper, we apply methods from algebraic and matrix theory to obtain the Seidel eigenvalue polynomials of the Petersen graph. Furthermore, we determine whether the Petersen graph is a Seidel integral graph.

References

[1]  Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London and Elsevier.
[2]  Von Collatz, L. and Sinogowitz, U. (1957) Spektren endlicher grafen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 21, 63-77.
https://doi.org/10.1007/bf02941924
[3]  Harary, F. and Schwenk, A.J. (1974) Which Graphs Have Integral Spectra? In: Lecture Notes in Mathematics, Springer, 45-51.
https://doi.org/10.1007/bfb0066434
[4]  Lv, S.M. (2008) The Seidel Polynomial and Spectrum of Complete Graphs. Journal of Qinghai Normal University (Natural Science Edition), 4, 7-9.
[5]  Lv, S.M. (2013) Some Results about the Seidel Integral Tree. Journal of Qinghai Normal University (Natural Science Edition), 29, 6-10.
[6]  Van Lint, J.H. and Seidel, J.J. (1991) Equilateral Point Sets in Elliptic Geometry. In: Geometry and Combinatorics, Elsevier, 3-16.
https://doi.org/10.1016/b978-0-12-189420-7.50008-6
[7]  Zeng, C.X. (2009) The Principal Eigenvalues of the Seidel Matrix of Graphs. Journal of Shaoyang University (Natural Science Edition), 1, 12.
[8]  Wang, L., Zhao, G. and Li, K. (2012) Seidel Integral Complete r-Partite Graphs. Graphs and Combinatorics, 30, 479-493.
https://doi.org/10.1007/s00373-012-1276-6
[9]  Berman, A., Shaked-Monderer, N., Singh, R. and Zhang, X. (2019) Complete Multipartite Graphs That Are Determined, up to Switching, by Their Seidel Spectrum. Linear Algebra and its Applications, 564, 58-71.
https://doi.org/10.1016/j.laa.2018.11.022
[10]  Greaves, G.R.W. (2018) Equiangular Line Systems and Switching Classes Containing Regular Graphs. Linear Algebra and Its Applications, 536, 31-51.
https://doi.org/10.1016/j.laa.2017.09.008
[11]  Haemers, W.H. (2012) Seidel Switching and Graph Energy. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2026916
[12]  Cvetkovic, D.M., Doob, M. and Sachs, H. (1980) Spectra of Graphs Theory and Application. Deutscher Verlag der Wissenschaften-Academic Press, 29-31.
[13]  Lv, S.M. (2011) The Seidel Polynomial and Spectrum of Complete Four-Partite Graphs. Journal of Northwest Normal University (Natural Science Edition), 47, 22-25.
[14]  Lv, S.M. (2011) The Seidel Eigenvalues Polynomials and S-Integral Graphs of Some Special Graphs. Journal of Qinghai Minzu University for Nationalities (Educational Science Edition), 31, 21-24.
[15]  Zhao, N., Wu, T.Z. and Guo, C.Z. (2013) The Complete Six-Partite Graphs Is a Necessary and Sufficient Condition for an S-Integral Graphs. Pure Mathematics and Applied Mathematics, 2, 132-138.
[16]  Huang, Y.D., Di, C.G. and Zhu, S.X. (2002) Matrix Theory and Its Application. University of Science and Technology of China Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133