全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic Diversity and Population Structure of Petiveria alliacea in Southern Benin Using Transferable Microsatellite Markers

DOI: 10.4236/ojgen.2025.152003, PP. 21-38

Keywords: Petiveria alliacea, Phytolacca acinosa, Transferability, SSRs or Microsatellites, South Benin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Petiveria alliacea is a uterotonic plant that effectively helps resolve uterine contractility abnormalities in traditional medicine. However, scientific knowledge of its diversity remains very limited to date. This study aimed to assess the transferability of eleven SSR markers from Phytolacca acinosa to Petiveria alliacea in order to evaluate its genetic diversity. Genomic DNA was extracted from 28 accessions of Petiveria alliacea sampled in southern Benin for PCR amplification using eleven pairs of SSR primers derived from Phytolacca acinosa. UPGMA and PCoA analyses were performed using NTSYS version 2.11a software to assess the genetic structure within the collection. Among the 11 markers studied, nine were transferable (81.82%), and six were polymorphic (54.55%). A total of 25 alleles were observed, with an average of 4.16 alleles per locus. The expected heterozygosity (He) ranged from 0.227 to 0.846, with an average of 0.633, while the observed heterozygosity (Ho) ranged from 0.150 to 1.000, with an average of 0.670. The mean fixation index (Fis) was ?0.005. The dendrogram constructed using the UPGMA method revealed two main groups at a similarity rate of 73%, which further divided into four subgroups at a similarity rate of 65%. The studied collection exhibited high genetic diversity. It is therefore urgent that these data be used as a basis for establishing conservation and domestication programs to ensure the efficient and sustainable use of the species.

References

[1]  Dassou, H.G., Yédomonhan, H., Adomou, A.C., Ogni, C.A., Tossou, M.G. and Akoegninou, A. (2015) Facteurs socioculturels et environnementaux déterminant la connaissance ethnovétérinaire au Bénin. Afrique Science, 11, 335-360.
[2]  Turner, N.J. and Turner, K.L. (2008) “Where Our Women Used to Get the Food”: Cumulative Effects and Loss of Ethnobotanical Knowledge and Practice; Case Study from Coastal British Columbia. Botany, 86, 103-115.
https://doi.org/10.1139/b07-020

[3]  Igoli, J., Ogaji, O., Tor-Anyiin, T. and Igoli, N. (2005) Traditional Medicine Practice Amongst the Igede People of Nigeria. Part II. African Journal of Traditional, Complementary and Alternative Medicines, 2, 134-152.
https://doi.org/10.4314/ajtcam.v2i2.31112

[4]  Sofowora, A. (2010) Plantes médicinales et médecine traditionnelle d’Afrique. KARTHALA Editions.
[5]  Neuwinger, H.D. (2000) Médecine traditionnelle africaine: Dictionnaire de l’utilisation et des applications des plantes. Medpharm Scientific Publishers, 589 p.
[6]  Adjanohoun, E., Adjakidjè, V., Ahyi, M.R.A., Aké Assi, L., Akoègninou, A., Dalmeda, J., Akpovo, F., Boukef, K., Chadaré, F., Cusset, G., Dramane, K., Eyme, J., Gassita, J.N., Gbaguidi, N., Goudoté, E., Guinko, S., Houngnon, P., Issa, L., Keita, A., Kiniffo, H.V., Koné Bamba, D., Musampa Nseyya, A., Saadou, N., Sodogandji, T.H., De Souza, S., Tchabi, A., Zinsou Dossa, C. and Zohoun, T. (1989) Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin. ACCT, 895.
[7]  Cronquist, A. (1968) The Evolution and Classification of Flowering Plants. New York Botanical Garden Press.
[8]  Ayedoun, M.A., Moudachirou, M., Sossou, P.V., Garneau, F., Gagnon, H. and Jean, F.-(1998) Volatile Constituents of the Root Oil of Petiveria alliacea L. from Benin. Journal of Essential Oil Research, 10, 645-646.
https://doi.org/10.1080/10412905.1998.9700996

[9]  Ouensanga, C. (1983) Medicinal Plants and Creole Remedies. Ed Désormeaux.
[10]  Oluwole, F.S. and Bolarinwa, A.F. (1998) The Uterine Contractile Effect of Petiveria alliacea Seeds. Fitoterapia, 69, 3-6.
[11]  Olomieja, A.O., Olanrewaju, I.O., Ayo-Ajayi, J.I., Jolayemi, G.E., Daniel, U.O. and Mordi, R.C. (2021) Antimicrobial and Antioxidant Properties of Petiveria alliacea. IOP Conference Series: Earth and Environmental Science, 655, Article ID: 012015.
https://doi.org/10.1088/1755-1315/655/1/012015

[12]  Elemo, O.O., Akinyede, A.A., Oreagba, I.A., Nicholas-Okpara, V.A. and Unuofin, J.O. (2022) Uterine Contractile Activity and Abortifacient Effect of the Aqueous Extract of Euphorbia Heterophylla L. Leaves in Albino Rats. Pharmacology and Toxicology of Natural Medicines, 2, 1-11.
https://doi.org/10.52406/ptnm.v2i1.14

[13]  Dissanayake, R., Braich, S., Cogan, N.O.I., Smith, K. and Kaur, S. (2020) Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Frontiers in Genetics, 11, Article 546.
https://doi.org/10.3389/fgene.2020.00546

[14]  Adoukonou-Sagbadja, H., Wagner, C., Ordon, F. and Friedt, W. (2010) Reproductive System and Molecular Phylogenetic Relationships of Fonio Millets (Digitaria spp., Poaceae) with Some Polyploid Wild Relatives. Tropical Plant Biology, 3, 240-251.
https://doi.org/10.1007/s12042-010-9063-0

[15]  Mantello, C.C., Suzuki, F.I., Souza, L.M., Gonçalves, P.S. and Souza, A.P. (2012) Microsatellite Marker Development for the Rubber Tree (Hevea brasiliensis): Characterization and Cross-Amplification in Wild Hevea Species. BMC Research Notes, 5, Article No. 329.
https://doi.org/10.1186/1756-0500-5-329

[16]  Provan, J., Powell, W. and Waugh, R. (1996) Microsatellite Analysis of Relationships within Cultivated Potato (Solanum tuberosum). Theoretical and Applied Genetics, 92, 1078-1084.
https://doi.org/10.1007/bf00224052

[17]  Kresovich, S., Szewc-McFadden, A.K., Bliek, S.M. and McFerson, J.R. (1995) Abundance and Characterization of Simple-Sequence Repeats (SSRs) Isolated from a Size-Fractionated Genomic Library of Brassica napus L. (Rapeseed). Theoretical and Applied Genetics, 91, 206-211.
https://doi.org/10.1007/bf00220879

[18]  Umer, F., Lovleen, and Manjit, I.S.S. (2011) Meiotic Analysis in a Natural Autotetraploid of Phytolacca acinosa Roxb. Chromosome Science, 14, 63-66.
[19]  Cheng, Y., Li, P., Yang, Y., Zhang, J., Yan, F. and Wang, H. (2017) Microsatellites for Phytolacca acinosa (Phytolaccaceae), a Traditional Medicinal Herb. Applications in Plant Sciences, 5, Article ID: 1700028.
https://doi.org/10.3732/apps.1700028

[20]  Gawel, N.J. and Jarret, R.L. (1991) A Modified CTAB DNA Extraction Procedure for Musa and Ipomoea. Plant Molecular Biology Reporter, 9, 262-266.
https://doi.org/10.1007/bf02672076

[21]  Djedatin, G., Nanoukon, C. and Sedah, P. (2021) DNA Extraction Methodology Following the CTAB Protocol. Laboratory of Molecular Biology and Bioinformatics Applied to Genomics. National School of Applied Biosciences and Biotechnologies.
[22]  Ahmed, M.O., Salem, F.B., Bedhiaf, S. and M’Naouer, D. (2010) Analysis of Molecular Genetic Diversity of Dromedaries (Camelus dromedarius) in Tunisia. Biotechnology, Agronomy and Society and Environment, 14, 399-408.
[23]  Loukou, N.E., Yapi-Gnaore, C.V., Touré, G., Coulibaly, Y., Rognon, X., Kayang, B., N’guetta, A.S.P., et al. (2009) Assessing the Diversity of Indigenous Chicken from Two Agroecological Zones of Côte d’Ivoire Using Microsatellite Markers. Journal of Animal and Plant Sciences, 5, 425-436.
[24]  Nei, M. (1972) Genetic Distance between Populations. The American Naturalist, 106, 283-292.
https://doi.org/10.1086/282771

[25]  Rohlf, F.J. (1992) NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, vs 2.11a. Exeter Publication.
[26]  Adoukonou-Sagbadja, H., Missihoun, A.A., Sedah, P., Dagba, R.A., Kinhoegbe, G., Ahanhanzo, C. and Agbangla, C. (2014) Variabilité génétique des accessions d’igname Dioscorea alata L. introduites au Bénin à partir des Îles du Sud-Pacifique. Journal of Applied Biosciences, 73, 5966-5978.
[27]  Dharajiya, D.T., Shah, A., Galvadiya, B.P., Patel, M.P., Srivastava, R., Pagi, N.K., et al. (2020) Genome-Wide Microsatellite Markers in Castor (Ricinus communis L.): Identification, Development, Characterization, and Transferability in Euphorbiaceae. Industrial Crops and Products, 151, Article ID: 112461.
https://doi.org/10.1016/j.indcrop.2020.112461

[28]  Whankaew, S., Kanjanawattanawong, S., Phumichai, C., Smith, D.R., Narangaja-vana, J. and Triwitayakorn, K. (2011) Cross-Genera Transferability of (Simple Se-quence Repeat) SSR Markers among Cassava (Manihot esculenta Crantz), Rubber Tree (Hevea brasiliensis Muell. Arg.) and Physic Nut (Jatropha curcas L.). African Journal of Biotechnology, 10, 1768-1776.
[29]  Kpatènon, M.J., Salako, K.V., Santoni, S., Zekraoui, L., Latreille, M., Tollon-Cordet, C., et al. (2020) Transferability, Development of Simple Sequence Repeat (SSR) Markers and Application to the Analysis of Genetic Diversity and Population Structure of the African Fan Palm (Borassus aethiopum Mart.) in Benin. BMC Genetics, 21, Article No. 145.
https://doi.org/10.1186/s12863-020-00955-y

[30]  Ben Romdhane, M., Riahi, L., Yazidi, R., Mliki, A. and Zoghlami, N. (2022) Cross Transferability of Barley Nuclear SSRs to Pearl Millet Genome Provides New Molecular Tools for Genetic Analyses and Marker Assisted Selection. Open Agriculture, 7, 668-678.
https://doi.org/10.1515/opag-2022-0132

[31]  Zhang, C., Jia, C., Liu, X., Zhao, H., Hou, L., Li, M., et al. (2022) Genetic Diversity Study on Geographical Populations of the Multipurpose Species Elsholtzia stauntonii Using Transferable Microsatellite Markers. Frontiers in Plant Science, 13, Article 903674.
https://doi.org/10.3389/fpls.2022.903674

[32]  Adoukonou-Sagbadja, H., Wagner, C., Dansi, A., Ahlemeyer, J., Daïnou, O., Akpagana, K., et al. (2007) Genetic Diversity and Population Differentiation of Traditional Fonio Millet (Digitaria spp.) Landraces from Different Agro-Ecological Zones of West Africa. Theoretical and Applied Genetics, 115, 917-931.
https://doi.org/10.1007/s00122-007-0618-x

[33]  Barreneche, T., Casasoli, M., Russell, K., Akkak, A., Meddour, H., Plomion, C., et al. (2003) Comparative Mapping between Quercus and Castanea Using Simple-Sequence Repeats (SSRs). Theoretical and Applied Genetics, 108, 558-566.
https://doi.org/10.1007/s00122-003-1462-2

[34]  González-Martínez, S.C., Robledo-Arnuncio, J.J., Collada, C., Díaz, A., Williams, C.G., Alía, R., et al. (2004) Cross-Amplification and Sequence Variation of Microsatellite Loci in Eurasian Hard Pines. Theoretical and Applied Genetics, 109, 103-111.
https://doi.org/10.1007/s00122-004-1596-x

[35]  Viruel, M.A. and Hormaza, J.I. (2003) Development, Characterization and Variability Analysis of Microsatellites in Lychee (Litchi chinensis Sonn., Sapindaceae). Theoretical and Applied Genetics, 108, 896-902.
https://doi.org/10.1007/s00122-003-1497-4

[36]  Rossetto, M. (2001) Sourcing of SSR Markers from Related Plant Species. In: Henry, R.J., Ed., Plant genotyping: The DNA fingerprinting of plants, CABI Publishing, 211-224.
https://doi.org/10.1079/9780851995151.0211

[37]  Foulley, J.L. and Ollivier, L. (2006) Genetic Diversity and Allelic Richness: Concepts and Application to Bovine Breeds. Rencontres autour des Recherches sur les Ruminants, 13, 227-230.
[38]  Wamalwa, E.N., Muoma, J. and Wekesa, C. (2016) Genetic Diversity of Cowpea (Vigna unguiculata (L.) Walp.) Accession in Kenya Gene Bank Based on Simple Sequence Repeat Markers. International Journal of Genomics, 2016, Article ID: 8956412.
https://doi.org/10.1155/2016/8956412

[39]  Kouakou, C.K., Roy-Macauley, H., Gueye, M.C., Otto, M.C., Rami, J.F., Cissé, N. and Pasquet, R.S. (2007) Genetic Diversity of Traditional Cowpea Cultivars [Vigna unguiculata (L.) Walp.] in Senegal: A Preliminary Study. Plant Genetic Resources Newsletter, 152, 33-34.
[40]  Mafakheri, K., Bihamta, M.R. and Abbasi, A.R. (2017) Assessment of Genetic Diversity in Cowpea (Vigna unguiculata L.) Germplasm Using Morphological and Molecular Characterisation. Cogent Food & Agriculture, 3, Article ID: 1327092.
https://doi.org/10.1080/23311932.2017.1327092

[41]  Asare, A.T., Gowda, B.S., Galyuon, I.K.A., Aboagye, L.L., Takrama, J.F. and Timko, M.P. (2010) Assessment of the Genetic Diversity in Cowpea (Vigna unguiculata L. Walp.) Germplasm from Ghana Using Simple Sequence Repeat Markers. Plant Genetic Resources, 8, 142-150.
https://doi.org/10.1017/s1479262110000092

[42]  Araiza-Lizarde, N., Angulo-Escalante, M.Á., Reynoso-Granados, T., Cruz-Hernández, P., Calderón-Vázquez, C.L. and Alcaraz-Melendez, L. (2021) Genetic Variability of Wild Jatropha curcas in Northwest Mexico. Tropical and Subtropical Agroecosystems, 24, 1-7.
[43]  Baudoin, J.P., Demol, J., Louant, B.P., Maréchal, R., Mergeai, G. and Otoul, É. (2002) Plant Improvement. Application to the Principle Species Cultivated in Tropical Regions. Les presses agronomiques de Gembloux, 581 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133