全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conversion of Electromagnetic Force to Gravity in Curvature Engine Spacecraft

DOI: 10.4236/jmp.2025.164034, PP. 627-649

Keywords: Grand Unification of Physics, Generalized Gauge Transformation, The Weyl Tensor, The Electromagnetic Antisymmetric Tensor, The Curvature Engine-Type Spacecrafts

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel theoretical framework that bridges electromagnetic and gravitational fields through generalized gauge transformations. The author demonstrates how curvature tensor components, such as the antisymmetric Weyl tensor, can be derived from the electromagnetic antisymmetric tensor, offering a new perspective on the interaction between these fields. A systematic method for converting electromagnetic force into gravitational force is proposed, utilizing the theory of generalized gauge transformations. By regulating the Weyl tensor with electromagnetic fields, the need for negative curvature is circumvented, representing a significant advancement in curvature engine-type spacecraft theories. While current technology does not yet enable realization of this concept, the approach holds considerable potential for both theoretical and technological progress. Key insights include the direct conversion of electromagnetic fields into gravity via generalized gauge equations, the possibility of creating differential curvature for superluminal travel, and the potential for future advancements in electromagnetic control of spacetime curvature. This work may lay the groundwork for further exploration of engine technologies and human interstellar flight, with a focus on powerful electromagnetic field generation, nonlinear electromagnetic and gravitational field models, and precise control of the Weyl tensor.

References

[1]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman.
[2]  Wald, R.M. (1984) General Relativity. University of Chicago Press.
https://doi.org/10.7208/chicago/9780226870373.001.0001
[3]  Thorne, K.S. (1994) Black Holes and Time Warps: Einstein’s Outrageous Legacy. W. W. Norton.
[4]  Gies, H. and Dittrich, W. (1998) Light Propagation in Non-Trivial QED Vacua. Physics Letters B, 431, 420-429.
https://doi.org/10.1016/s0370-2693(98)00572-3
[5]  Rezzolla, L. and Zanotti, O. (2013) Relativistic Hydrodynamics. Oxford University Press.
[6]  Abbott, B.P., et al. (2017) Multi-Messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters, 848, L12.
[7]  Overduin, J.M. and Wesson, P.S. (1997) Kaluza-Klein Gravity. Physics Reports, 283, 303-378.
https://doi.org/10.1016/s0370-1573(96)00046-4
[8]  Appelquist, T., Chodos, A. and Freund, P.G.O. (1987) Modern Kaluza-Klein Theories. Addison-Wesley.
[9]  Ciufolini, I. and Wheeler, J.A. (1995) Gravitation and Inertia. Princeton University Press.
[10]  Carroll, S.M. (2004) Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley.
[11]  Gies, H. and Karbstein, F. (2017) An Analytic Approach to Photon-Photon Scattering in Quantum Electrodynamics. Journal of High Energy Physics, No. 3, 108.
[12]  Heisenberg, W. and Euler, H. (1936) Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift für Physik, 98, 714-732.
https://doi.org/10.1007/bf01343663
[13]  Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 61, 781-811.
https://doi.org/10.1002/prop.201300020
[14]  Rovelli, C. (2012) The Planck Star Hypothesis. Physical Review D, 92, Article ID: 044034.
[15]  Marklund, M. and Shukla, P.K. (2006) Nonlinear Collective Effects in Photon-Photon and Photon-Plasma Interactions. Reviews of Modern Physics, 78, 591-640.
https://doi.org/10.1103/revmodphys.78.591
[16]  Extreme Light Infrastructure (ELI) (2023) ELI Ultra-High Intensity Laser Research.
https://www.eli-laser.eu
[17]  Green, M.B., Schwarz, J.H. and Witten, E. (1987) Superstring Theory: Volume 1. Cambridge University Press.
[18]  Polchinski, J. (1998) String Theory: Volume 1, An Introduction to the Bosonic String. Cambridge University Press.
https://doi.org/10.1017/cbo9780511816079
[19]  Burgess, C.P. (2004) Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory. Living Reviews in Relativity, 7, Article No. 5.
https://doi.org/10.12942/lrr-2004-5
[20]  Donoghue, J.F. (1994) General Relativity as an Effective Field Theory: The Leading Quantum Corrections. Physical Review D, 50, 3874-3888.
https://doi.org/10.1103/physrevd.50.3874
[21]  Qiao, B. (2023) An Outline of the Grand Unified Theory of Gauge Fields. Journal of Modern Physics, 14, 212-326.
https://doi.org/10.4236/jmp.2023.143016
[22]  Qiao, B. (2023) The Significance of Generalized Gauge Transformation across Fundamental Interactions. Journal of Modern Physics, 14, 604-622.
https://doi.org/10.4236/jmp.2023.145035
[23]  Bi, Q. (2023) Large Scale Fundamental Interactions in the Universe. Journal of Modern Physics, 14, 1703-1720.
https://doi.org/10.4236/jmp.2023.1413100
[24]  Bi, Q. (2024) The Gravitational Constant as the Function of the Cosmic Scale. Journal of Modern Physics, 15, 1745-1759.
https://doi.org/10.4236/jmp.2024.1511078
[25]  Qiao, B. (2024) Further Exploration of the Gauge Transformation across Fundamental Interactions. Journal of Modern Physics, 15, 2317-2334.
https://doi.org/10.4236/jmp.2024.1513094
[26]  Lian, C.B. and Zhou, B. (2019) Introduction to Differential Geometry and General Relativity. Second Edition, Science Press.
[27]  Wald, R.M. (1984) General Relativity. The University of Chicago Press.
[28]  Kaluza, T. (1921). On the Unification Problem in Physics. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 54, 966-972.
[29]  Overduin, J.M. and Wesson, P.S. (1997) Kaluza-Klein Gravity. Physics Reports, 283, 303-378.
https://doi.org/10.1016/s0370-1573(96)00046-4
[30]  Evans, M.W. (2005) The Spinning and Curving of Spacetime: The Electromagnetic and Gravitational Fields in the Evans Field Theory. Foundations of Physics Letters, 18, 431-454.
https://doi.org/10.1007/s10702-005-7535-5
[31]  Hehl, F.W., McCrea, J.D., Mielke, E.W. and Ne’eman, Y. (1995) Metric-affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance. Physics Reports, 258, 1-171.
https://doi.org/10.1016/0370-1573(94)00111-f
[32]  Choi, M., Okyay, M.S., Dieguez, A.P., Ben, M.D., Ibrahim, K.Z. and Wong, B.M. (2024) QRCODE: Massively Parallelized Real-Time Time-Dependent Density Functional Theory for Periodic Systems. Computer Physics Communications, 305, Article ID: 109349.
https://doi.org/10.1016/j.cpc.2024.109349
[33]  Hanasaki, K., Ali, Z.A., Choi, M., Del Ben, M. and Wong, B.M. (2022) Implementation of Real-Time TDDFT for Periodic Systems in the Open-Source PYSCF Software Package. Journal of Computational Chemistry, 44, 980-987.
https://doi.org/10.1002/jcc.27058
[34]  Alcubierre, M. (1994) The Warp Drive: Hyper-Fast Travel within General Relativity. Science, 270, 1077-1079.
[35]  Visser, M. (1998) Lorentzian Wormholes: From Einstein to Hawking. Springer Science & Business Media.
[36]  Klinkhamer, F.R. and Volovik, G.E. (2008) The Alcubierre Drive and the Energy Conditions. Physics Letters B, 673, 214-217.
[37]  Lobo, F.S.N. (2008) The Dark Side of Gravity: A Review on Exotic Matter. Physics of the Dark Universe, 1, 8-22.
[38]  Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. Physical Review, 48, 73-77.
https://doi.org/10.1103/physrev.48.73
[39]  Born, M. and Infeld, L. (1933) Foundations of the New Field Theory. Nature, 132, 1004-1004.
https://doi.org/10.1038/1321004b0
[40]  Moffat, J.W. (2006) Scalar-Tensor-Vector Gravity Theory. Journal of Cosmology and Astroparticle Physics, 4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133