全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Supereulerian Indices of Some Classes of Graphs

DOI: 10.4236/am.2025.164019, PP. 357-364

Keywords: Petersen Graph, Generalized Petersen Graph, Supereulerian Index, Iterated Line Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

Researching Supereulerian index of a graph G is NP-hard. In this paper, we consider Supereulerian indices of some classes of graphs, Supereulerian index means the minimum integer k of iterated line graph L k ( G ) of a graph G such that L k ( G ) is Supereulerian. We show that Supereulerian indices of those graphs obtained by replacing every vertex of Petersen graph with n -cycle or a complete graph of order n , or adding n pendant edges to each vertex of Petersen graph are both 1. Concurrently, we show that Supereulerian indices of partial Generalized Petersen graphs are also 1.

References

[1]  Bondy, J.A. and Murty U.S.R. (1976) Graph Theory with Applications. Elsevier.
[2]  Watkins, M.E. (1969) A Theorem on Tait Colorings with an Application to the Generalized Petersen Graphs. Journal of Combinatorial Theory, 6, 152-164.
https://doi.org/10.1016/s0021-9800(69)80116-x
[3]  Frucht, R. (1977) A Canonical Representation of Trivalent Hamiltonian Graphs. Journal of Graph Theory, 1, 45-60.
https://doi.org/10.1002/jgt.3190010111
[4]  Alspach, B. (1983) The Classification of Hamiltonian Generalized Petersen Graphs. Journal of Combinatorial Theory, Series B, 34, 293-312.
https://doi.org/10.1016/0095-8956(83)90042-4
[5]  Chartrand, G. (1968) On Hamiltonian Line-Graphs. Transactions of the American Mathematical Society, 134, 559-566.
https://doi.org/10.1090/s0002-9947-1968-0231740-1
[6]  Chartrand, G. and Wall, C.E. (1973) On the Hamiltonian Index of a Graph. Studia Scientiarum Mathematicarum Hungarica, 8, 43-48.
[7]  Chark, L.H. and Wormald, N.C. (1983) Hamiltonian-Like Indices of Graphs. Ars Combinatoria, 15, 131-148.
[8]  Catlin, P.A., Janakiraman, I.T.N. and Srinivasan, N. (1990) Hamilton Cycles and Closed Trails in Iterated Line Graphs. Journal of Graph Theory, 14, 347-364.
https://doi.org/10.1002/jgt.3190140308
[9]  Han, L., Lai, H., Xiong, L. and Yan, H. (2010) The Chvátal-Erdös Condition for Supereulerian Graphs and the Hamiltonian Index. Discrete Mathematics, 310, 2082-2090.
https://doi.org/10.1016/j.disc.2010.03.020
[10]  Xiong, L.M. and Yan, H.Y. (2005) On the Supereulerian Index of a Graph. Journal of Beijing Institute of Technology, 14, 453-457.
[11]  Xiong, L.M. and Li, M.C. (2010) Supereulerian Index Is Stable under Contractions and Closures. Ars Combinatoria, 97, 129-142.
[12]  Xiong, L.M., Liu Z.M. and Yi, G.S. (2000) Characterization of the n-th Supereulerian Iterated Line Graph. Journal of Jiangxi Normal University, No. 24, 107-110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133