This study was conducted on the sediments of Benanga Reservoir, Samarinda, East Kalimantan. The purpose of the study was to determine the content and distribution pattern of heavy metal iron (Fe) in the sediments of Benanga Reservoir, as well as its potential as a contaminant that has an impact on the environment. Sampling was carried out by core drilling and determination of Fe content in sediment through laboratory analysis using the XRF method. The results of the analysis showed that the average content of Fe metal in the sediment deposits of Benanga Reservoir increased from the bottom layer (A) to the middle layer (B) and continued to the top layer (C). The Fe content in the sediments of Benanga Reservoir far exceeded the toxicity classification standards for heavy metals in sediments according to the USEPA standard (1977), so the distribution of “heavily contaminated” Fe contamination was spread throughout the sediment deposits of Benanga Reservoir. The controlling factors for the amount of Fe content in the sediment deposits of Benanga Reservoir are current dynamics, sediment texture, organic matter content, and sediment deposition velocity.
References
[1]
Manojlović, S., Sibinović, M., Srejić, T., Novković, I., Milošević, M.V., Gatarić, D., etal. (2022) Factors Controlling the Change of Soil Erosion Intensity in Mountain Watersheds in Serbia. FrontiersinEnvironmentalScience, 10, Article 888901. https://doi.org/10.3389/fenvs.2022.888901
[2]
Gong, J., Ouyang, W., He, M. and Lin, C. (2023) Heavy Metal Deposition Dynamics under Improved Vegetation in the Middle Reach of the Yangtze River. EnvironmentInternational, 171, Article 107686. https://doi.org/10.1016/j.envint.2022.107686
[3]
Nur, A. and Fadlin, F. (2024) Sedimentation and Mitigation Strategies to Maintain Benanga Dam Capacity, North Samarinda. InternationalJournalofEntrepreneurshipandBusinessDevelopment, 7, 1021-1026. https://doi.org/10.29138/ijebd.v7i5.2964
[4]
Dargahi, B. (2012) Reservoir Sedimentation. Encyclopedia of Lakes and Reservoirs.
[5]
Ferrans, L., Jani, Y., Burlakovs, J., Klavins, M. and Hogland, W. (2021) Chemical Speciation of Metals from Marine Sediments: Assessment of Potential Pollution Risk While Dredging, a Case Study in Southern Sweden. Chemosphere, 263, Article 128105. https://doi.org/10.1016/j.chemosphere.2020.128105
[6]
Melquiades, F.L., Appoloni, C.R., Parreira, P.S. and Silva, W.D. (2008) In situ Measurement of Metal Concentration in River Water Using Portable Edxrf System. In: Sánchez, M.L., Ed., CausesandEffectsofHeavyMetalPollution, Nova Science Publishers Inc., 201-248.
[7]
Bhattacharya, A., Satpathy, K.K., Prasad, M.V.R., Canario, J., Chatterjee, M., Sarkar, S.K., etal. (2008) Geochemistry of Major and Trace Elements in Core Sediments of Sunderban Delta, India: An Assessment of Metal Pollution Using Atomic Absorption Spectrometer and Inductively Coupled Plasma Mass Spectrometry. In: Sánchez, M.L., Ed., Causes and Effects of Heavy Metal Pollution, Nova Science Publishers, 306-340.
[8]
Supriyantini, E. and Endrawati, H. (2015) Kandungan Logam Berat Besi (Fe) Pada Air, Sedimen, Dan Kerang Hijau (Perna viridis) Di Perairan Tanjung Emas Semarang. JurnalKelautanTropis, 18, 38-45. https://doi.org/10.14710/jkt.v18i1.512
[9]
Noryadi and Rizal, S. (2008) Kajian Limnologi dan Pengelolaan Waduk Benanga di Kota Samarinda. https://rizalerosa.blogspot.com/2008/04/kajian-limnologi-waduk-benanga.html
[10]
Batts, D. and Cubbage, J. (1995) Summary of Guidelines for Contaminated Freshwater Sediments. https://apps.ecology.wa.gov/publications/documents/95308.pdf
[11]
Rafif, M., Subagja, R., Nurcholis, M., Ardiansyah, Y. and Dirja, S. (2024) Evaluation of Settling Pond System Application in Acid Mine Drainage Management at PT Internasional Prima Coal Samarinda East Kalimantan. SoilandWaterJournal, 21, 1-19.
[12]
Ministry of the Environment Conservation and Parks (2024) Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario. https://wwwontario.ca/document/guidelines-identifying-assessing-and-managing-contaminated-sediments-ontario/identification-and-assessment#fnal
[13]
Sudarso, J. and Hindarti, D. (2021) Telaah Kualitas dan Toksisitas Sedimen. LIPI Press.
[14]
Senze, M., Kowalska-Góralska, M., Czyż, K., Wondołowska-Grabowska, A. and Łuczyńska, J. (2021) Aluminum in Bottom Sediments of the Lower Silesian Rivers Supplying Dam Reservoirs vs. Selected Chemical Parameters. InternationalJournalofEnvironmentalResearchandPublicHealth, 18, Article 13170. https://doi.org/10.3390/ijerph182413170
[15]
Che Abdullah, M.I., Md Sah, A.S.R. and Haris, H. (2020) Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. TropicalLifeSciencesResearch, 31, 109-125. https://doi.org/10.21315/tlsr2020.31.3.8
[16]
Sierra, C., Ordóñez, C., Saavedra, A. and Gallego, J.R. (2015) Element Enrichment Factor Calculation Using Grain-Size Distribution and Functional Data Regression. Chemosphere, 119, 1192-1199. https://doi.org/10.1016/j.chemosphere.2014.10.024
[17]
Putra, R.D. and Apriadi, T. (2018) Studi Kontaminasi Logam Berat (Pb dan Cr) Pasca Pertambangan Bauksit Sebagai Potensi Lokasi Kegiatan Budidaya Perikanan. IntekAkuakultur, 2, 1-15. https://doi.org/10.31629/intek.v2i1.273
[18]
Sojka, M. and Jaskuła, J. (2022) Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. InternationalJournalofEnvironmentalResearchandPublicHealth, 19, Article 10502. https://doi.org/10.3390/ijerph191710502
[19]
Emerson, D., Fleming, E.J. and McBeth, J.M. (2010) Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective. AnnualReviewofMicrobiology, 64, 561-583. https://doi.org/10.1146/annurev.micro.112408.134208
[20]
Harish, V., Aslam, S., Chouhan, S., Pratap, Y. and Lalotra, S. (2023) Iron Toxicity in Plants: A Review. InternationalJournalofEnvironmentandClimateChange, 13, 1894-1900. https://doi.org/10.9734/ijecc/2023/v13i82145