|
脉络膜在角膜塑形镜控制近视中的作用研究进展
|
Abstract:
近视作为一种全球性的高发性疾病,其发病机制和防控手段备受关注。角膜塑形镜(orthokeratology, OK镜)被证明可以有效抑制近视眼的眼轴增长,作为近视控制的重要手段正在被广泛应用,但OK镜控制眼轴增长的具体机制目前尚不清楚。研究发现,近视发生发展过程中存在脉络膜的改变,主要是脉络膜厚度(choroidal thicknes, ChT)降低和脉络膜血流灌注(choroidal blood perfusion, ChBP)减少。同时有研究表明,在使用OK镜抑制眼轴增长的过程中,存在ChT增厚和ChBP增多等改变。近期研究发现,早期的脉络膜改变与远期的近视转变有相关性。同时,OK镜配戴早期1月时的脉络膜改变可以预测远期1年后的近视控制效果。综合分析,在OK镜控制近视的过程中,脉络膜的改变起到一定的积极作用。通过药物和技术手段控制脉络膜的厚度和血流灌注可以作为近视防控的新思路和新导向。
Myopia, a prevalent global disease, has been paid considerable attention in the pathogenesis and preventive strategies. Orthokeratology has been demonstrated to effectively inhibit axial elongation in myopic eyes, serving as a possible method for myopia control. However, the specific mechanism by which orthokeratology controls axial elongation remains unclear. Studies have observed choroidal changes during the progression of myopia, characterized primarily by the decrease in choroidal thickness (ChT) and choroidal blood perfusion (ChBP). Simultaneously, research indicates that control of axial elongation with orthokeratology is associated with increased ChT and enhanced ChBP. Recent studies have found that early choroidal changes are correlated with long-term myopia progression. Moreover, choroidal changes observed one month after the initiation of orthokeratology can predict myopia control outcomes one year later. Taken together, these findings suggest that choroidal changes play an important role in modulating myopia progression with orthokeratology. Regulating choroidal thickness and blood perfusion through pharmaceutical and technological means may provide new insights and strategies for myopia prevention and control.
[1] | Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006 |
[2] | Fricke, T.R., Jong, M., Naidoo, K.S., Sankaridurg, P., Naduvilath, T.J., Ho, S.M., et al. (2018) Global Prevalence of Visual Impairment Associated with Myopic Macular Degeneration and Temporal Trends from 2000 through 2050: Systematic Review, Meta-Analysis and Modelling. British Journal of Ophthalmology, 102, 855-862. https://doi.org/10.1136/bjophthalmol-2017-311266 |
[3] | Liu, Y., Wang, L., Xu, Y., Pang, Z. and Mu, G. (2021) The Influence of the Choroid on the Onset and Development of Myopia: From Perspectives of Choroidal Thickness and Blood Flow. Acta Ophthalmologica, 99, 730-738. https://doi.org/10.1111/aos.14773 |
[4] | Wu, Q., Chen, Q., Lin, B., Huang, S., Wang, Y., Zhang, L., et al. (2020) Relationships among Retinal/Choroidal Thickness, Retinal Microvascular Network and Visual Field in High Myopia. Acta Ophthalmologica, 98, e709-e714. https://doi.org/10.1111/aos.14372 |
[5] | De Oliveira, P.R.C., Berger, A.R. and Chow, D.R. (2017) Optical Coherence Tomography Angiography in Chorioretinal Disorders. Canadian Journal of Ophthalmology, 52, 125-136. https://doi.org/10.1016/j.jcjo.2016.07.015 |
[6] | Ostrin, L.A., Harb, E., Nickla, D.L., Read, S.A., Alonso-Caneiro, D., Schroedl, F., et al. (2023) IMI—The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Investigative Opthalmology & Visual Science, 64, Article 4. https://doi.org/10.1167/iovs.64.6.4 |
[7] | Thomson, K., Kelly, T., Karouta, C., Morgan, I. and Ashby, R. (2021) Insights into the Mechanism by Which Atropine Inhibits Myopia: Evidence against Cholinergic Hyperactivity and Modulation of Dopamine Release. British Journal of Pharmacology, 178, 4501-4517. https://doi.org/10.1111/bph.15629 |
[8] | Wallman, J. and Winawer, J. (2004) Homeostasis of Eye Growth and the Question of Myopia. Neuron, 43, 447-468. https://doi.org/10.1016/j.neuron.2004.08.008 |
[9] | Hirata, A. and Negi, A. (1998) Morphological Changes of Choriocapillaris in Experimentally Induced Chick Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 236, 132-137. https://doi.org/10.1007/s004170050053 |
[10] | Shih, Y., Fitzgerald, M.E.C., Norton, T.T., Gamlin, P.D.R., Hodos, W. and Reiner, A. (1993) Reduction in Choroidal Blood Flow Occurs in Chicks Wearing Goggles That Induce Eye Growth toward Myopia. Current Eye Research, 12, 219-227. https://doi.org/10.3109/02713689308999467 |
[11] | Zhu, X., Park, T.W., Winawer, J. and Wallman, J. (2005) In a Matter of Minutes, the Eye Can Know Which Way to Grow. Investigative Opthalmology & Visual Science, 46, 2238. https://doi.org/10.1167/iovs.04-0956 |
[12] | Zhang, S., Zhang, G., Zhou, X., Xu, R., Wang, S., Guan, Z., et al. (2019) Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia. Investigative Opthalmology & Visual Science, 60, Article 3074. https://doi.org/10.1167/iovs.18-26397 |
[13] | Prousali, E., Dastiridou, A., Ziakas, N., Androudi, S. and Mataftsi, A. (2021) Choroidal Thickness and Ocular Growth in Childhood. Survey of Ophthalmology, 66, 261-275. https://doi.org/10.1016/j.survophthal.2020.06.008 |
[14] | Xu, M., Yu, X., Wan, M., Feng, K., Zhang, J., Shen, M., et al. (2022) Two-Year Longitudinal Change in Choroidal and Retinal Thickness in School-Aged Myopic Children: Exploratory Analysis of Clinical Trials for Myopia Progression. Eye and Vision, 9, Article No. 5. https://doi.org/10.1186/s40662-022-00276-4 |
[15] | Wallman, J., Wildsoet, C., Xu, A., Gottlieb, M.D., Nickla, D.L., Marran, L., et al. (1995) Moving the Retina: Choroidal Modulation of Refractive State. Vision Research, 35, 37-50. https://doi.org/10.1016/0042-6989(94)e0049-q |
[16] | Teberik, K. and Kaya, M. (2017) Retinal and Choroidal Thickness in Patients with High Myopia without Maculopathy. Pakistan Journal of Medical Sciences, 33, 1438-1443. https://doi.org/10.12669/pjms.336.13726 |
[17] | Rymer, J. and Wildsoet, C.F. (2005) The Role of the Retinal Pigment Epithelium in Eye Growth Regulation and Myopia: A Review. Visual Neuroscience, 22, 251-261. https://doi.org/10.1017/s0952523805223015 |
[18] | Pendrak, K., Papastergiou, G.I., Lin, T., Laties, A.M. and Stone, R.A. (2000) Choroidal Vascular Permeability in Visually Regulated Eye Growth. Experimental Eye Research, 70, 629-637. https://doi.org/10.1006/exer.2000.0825 |
[19] | Devarajan, K., Sim, R., Chua, J., Wong, C.W., Matsumura, S., Htoon, H.M., et al. (2019) Optical Coherence Tomography Angiography for the Assessment of Choroidal Vasculature in High Myopia. British Journal of Ophthalmology, 104, 917-923. https://doi.org/10.1136/bjophthalmol-2019-314769 |
[20] | Mastropasqua, R., Viggiano, P., Borrelli, E., Evangelista, F., Libertini, D., Di Antonio, L., et al. (2019) In Vivo Mapping of the Choriocapillaris in High Myopia: A Widefield Swept Source Optical Coherence Tomography Angiography. Scientific Reports, 9, Article No. 18932. https://doi.org/10.1038/s41598-019-55192-w |
[21] | Mo, J., Duan, A., Chan, S., Wang, X. and Wei, W. (2017) Vascular Flow Density in Pathological Myopia: An Optical Coherence Tomography Angiography Study. BMJ Open, 7, e013571. https://doi.org/10.1136/bmjopen-2016-013571 |
[22] | Fitzgerald, M.E.C., Wildsoet, C.F. and Reiner, A. (2002) Temporal Relationship of Choroidal Blood Flow and Thickness Changes during Recovery from Form Deprivation Myopia in Chicks. Experimental Eye Research, 74, 561-570. https://doi.org/10.1006/exer.2002.1142 |
[23] | Kim, D.Y., Silverman, R.H., Chan, R.V.P., Khanifar, A.A., Rondeau, M., Lloyd, H., et al. (2012) Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®). Acta Ophthalmologica, 91, 183-188. https://doi.org/10.1111/j.1755-3768.2011.02305.x |
[24] | Nickla, D.L., Totonelly, K. and Dhillon, B. (2010) Dopaminergic Agonists That Result in Ocular Growth Inhibition Also Elicit Transient Increases in Choroidal Thickness in Chicks. Experimental Eye Research, 91, 715-720. https://doi.org/10.1016/j.exer.2010.08.021 |
[25] | Wu, H., Chen, W., Zhao, F., Zhou, Q., Reinach, P.S., Deng, L., et al. (2018) Scleral Hypoxia Is a Target for Myopia Control. Proceedings of the National Academy of Sciences of the United States of America, 115, E7091-E7100. https://doi.org/10.1073/pnas.1721443115 |
[26] | McBrien, N. (2003) Role of the Sclera in the Development and Pathological Complications of Myopia. Progress in Retinal and Eye Research, 22, 307-338. https://doi.org/10.1016/s1350-9462(02)00063-0 |
[27] | McBrien, N.A. (2013) Regulation of Scleral Metabolism in Myopia and the Role of Transforming Growth Factor-β. Experimental Eye Research, 114, 128-140. https://doi.org/10.1016/j.exer.2013.01.014 |
[28] | Zhou, X., Zhang, S., Zhang, G., Chen, Y., Lei, Y., Xiang, J., et al. (2020) Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 61, Article 25. https://doi.org/10.1167/iovs.61.13.25 |
[29] | Zhou, X., Zhang, S., Yang, F., Yang, Y., Huang, Q., Huang, C., et al. (2021) Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 62, Article 30. https://doi.org/10.1167/iovs.62.15.30 |
[30] | Wu, H., Liu, M., Wang, Y., Li, X., Zhou, W., Li, H., et al. (2024) Short-Term Choroidal Changes as Early Indicators for Future Myopic Shift in Primary School Children: Results of a 2-Year Cohort Study. British Journal of Ophthalmology, 109, 273-280. https://doi.org/10.1136/bjo-2024-325871 |
[31] | Pan, M., Zhao, F., Xie, B., Wu, H., Zhang, S., Ye, C., et al. (2021) Dietary ω-3 Polyunsaturated Fatty Acids Are Protective for Myopia. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104689118. https://doi.org/10.1073/pnas.2104689118 |
[32] | Hiraoka, T., Kakita, T., Okamoto, F., Takahashi, H. and Oshika, T. (2012) Long-Term Effect of Overnight Orthokeratology on Axial Length Elongation in Childhood Myopia: A 5-Year Follow-Up Study. Investigative Opthalmology & Visual Science, 53, Article 3913. https://doi.org/10.1167/iovs.11-8453 |
[33] | Lau, J.K., Wan, K., Cheung, S., Vincent, S.J. and Cho, P. (2019) Weekly Changes in Axial Length and Choroidal Thickness in Children during and Following Orthokeratology Treatment with Different Compression Factors. Translational Vision Science & Technology, 8, Article 9. https://doi.org/10.1167/tvst.8.4.9 |
[34] | Xu, S., Wang, M., Lin, S., Jiang, J., Yu, M., Tang, X., et al. (2023) Long-term Effect of Orthokeratology on Choroidal Thickness and Choroidal Contour in Myopic Children. British Journal of Ophthalmology, 108, 1067-1074. https://doi.org/10.1136/bjo-2023-323764 |
[35] | Zhu, Q. and Zhao, Q. (2022) Short-Term Effect of Orthokeratology Lens Wear on Choroidal Blood Flow in Children with Low and Moderate Myopia. Scientific Reports, 12, Article No. 17653. https://doi.org/10.1038/s41598-022-21594-6 |
[36] | Wang, X., Chen, M., Zeng, L. and Liu, L. (2022) Investigation of Retinal Microvasculature and Choriocapillaris in Adolescent Myopic Patients with Astigmatism Undergoing Orthokeratology. BMC Ophthalmology, 22, Article No. 382. https://doi.org/10.1186/s12886-022-02572-y |
[37] | Liu, M., Huang, J., Xie, Z., Wang, Y., Wang, P., Xia, R., et al. (2025) Dynamic Changes of Choroidal Vasculature and Its Association with Myopia Control Efficacy in Children during 1-Year Orthokeratology Treatment. Contact Lens and Anterior Eye, 48, Article ID: 102314. https://doi.org/10.1016/j.clae.2024.102314 |
[38] | Chan, B., Cho, P. and Mountford, J. (2008) The Validity of the Jessen Formula in Overnight Orthokeratology: A Retrospective Study. Ophthalmic and Physiological Optics, 28, 265-268. https://doi.org/10.1111/j.1475-1313.2008.00545.x |
[39] | Zhong, Y., Chen, Z., Xue, F., Miao, H. and Zhou, X. (2015) Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship with 2-Year Axial Length Change. Investigative Opthalmology & Visual Science, 56, Article 4514. https://doi.org/10.1167/iovs.14-13935 |
[40] | Zhong, Y., Chen, Z., Xue, F., Zhou, J., Niu, L. and Zhou, X. (2014) Corneal Power Change Is Predictive of Myopia Progression in Orthokeratology. Optometry and Vision Science, 91, 404-411. https://doi.org/10.1097/opx.0000000000000183 |
[41] | Santodomingo-Rubido, J., Villa-Collar, C., Gilmartin, B. and Gutiérrez-Ortega, R. (2018) Short-Term and Long-Term Changes in Corneal Power Are Not Correlated with Axial Elongation of the Eye Induced by Orthokeratology in Children. Eye & Contact Lens: Science & Clinical Practice, 44, 260-267. https://doi.org/10.1097/icl.0000000000000313 |
[42] | Wan, K., Lau, J.K., Cheung, S.W. and Cho, P. (2020) Orthokeratology with Increased Compression Factor (OKIC): Study Design and Preliminary Results. BMJ Open Ophthalmology, 5, e000345. https://doi.org/10.1136/bmjophth-2019-000345 |
[43] | Tang, W., Zhang, H., Li, S. and Liang, H. (2023) Orthokeratology with Increased Compression Factor in Adolescent Myopia Control: A 2-Year Prospective Randomized Clinical Trial. International Journal of Ophthalmology, 16, 770-777. https://doi.org/10.18240/ijo.2023.05.15 |
[44] | Gardner, D.J., Walline, J.J. and Mutti, D.O. (2015) Choroidal Thickness and Peripheral Myopic Defocus during Orthokeratology. Optometry and Vision Science, 92, 579-588. https://doi.org/10.1097/opx.0000000000000573 |
[45] | Lee, J.H., Hong, I.H., Lee, T.Y., Han, J.R. and Jeon, G.S. (2020) Choroidal Thickness Changes after Orthokeratology Lens Wearing in Young Adults with Myopia. Ophthalmic Research, 64, 121-127. https://doi.org/10.1159/000510715 |
[46] | Stillitano, I., Maidana, E., Lui, M., Lipener, C. and Höfling-Lima, A.L. (2007) Bubble and Corneal Dimple Formation after the First Overnight Wear of an Orthokeratology Lens: A Case Series. Eye & Contact Lens: Science & Clinical Practice, 33, 253-258. https://doi.org/10.1097/01.icl.0000252870.05807.ea |
[47] | Lu, W., Ning, R., Diao, K., Ding, Y., Chen, R., Zhou, L., et al. (2022) Comparison of Two Main Orthokeratology Lens Designs in Efficacy and Safety for Myopia Control. Frontiers in Medicine, 9, Article 798314. https://doi.org/10.3389/fmed.2022.798314 |
[48] | Li, Z., Hu, Y., Cui, D., Long, W., He, M. and Yang, X. (2018) Change in Subfoveal Choroidal Thickness Secondary to Orthokeratology and Its Cessation: A Predictor for the Change in Axial Length. Acta Ophthalmologica, 97, e454-e459. https://doi.org/10.1111/aos.13866 |
[49] | Wu, H., Peng, T., Zhou, W., Huang, Z., Li, H., Wang, T., et al. (2023) Choroidal Vasculature Act as Predictive Biomarkers of Long-Term Ocular Elongation in Myopic Children Treated with Orthokeratology: A Prospective Cohort Study. Eye and Vision, 10, Article No. 27. https://doi.org/10.1186/s40662-023-00345-2 |