|
基于自适应动态规划的柔性机械臂跨尺度运动控制研究
|
Abstract:
本文研究了液压驱动柔性机器人操控臂系统(HDFRMS)的跨尺度运动控制问题,提出了一种基于自适应动态规划(ADP)的控制方法。本文首先推导了一个完整的三阶动力学模型,涵盖三连杆刚柔耦合操控臂、非对称四通阀控制的液压缸和液压执行器。然后,提出了一种新颖的奇异摄动解耦方法,将系统分解为三个时间尺度上的子系统:慢子系统(SSS)、第二快子系统(SFS)和第一快子系统(FFS),分别描述操控臂的大范围运动、柔性振动和液压伺服控制。通过设计自适应动态规划轨迹跟踪控制(ADP)、鲁棒最优振动控制(ROC)和自适应滑模伺服控制(ASMC)等复合控制器,并利用李雅普诺夫稳定性理论证明了系统的稳定性。仿真结果表明,所提出的控制方法能够在无不确定性和存在不确定性的情况下,实现精确的轨迹跟踪和有效的振动抑制,且在变负载条件下展现出良好的鲁棒性和适应性。
This paper investigates the cross-scale motion control problem of a Hydraulic-Driven Flexible Robotic Manipulator System (HDFRMS) and proposes a control methodology based on Adaptive Dynamic Programming (ADP). Initially, a comprehensive third-order dynamic model is derived, encompassing a three-link rigid-flexible coupled manipulator, asymmetric four-way valve-controlled hydraulic cylinders, and hydraulic actuators. Subsequently, a novel decoupling method based on Singular Perturbation Theory (SPT) is introduced to decompose the system into three subsystems operating on distinct timescales: the Slow Subsystem (SSS), the Second Fast Subsystem (SFS), and the First Fast Subsystem (FFS), which respectively characterize the large-scale motion of the manipulator, the flexible vibrations, and the hydraulic servo control. The stability of the system is demonstrated by designing composite controllers, including ADP-based trajectory tracking control, Robust Optimal Vibration Control (ROC), and Adaptive Sliding Mode Servo Control (ASMC), and employing Lyapunov stability theory. Simulation results indicate that the proposed control method can achieve precise trajectory tracking and effective vibration suppression under both deterministic and uncertain conditions while also exhibiting robustness and adaptability under variable payload scenarios.
[1] | Cibicik, A. and Egeland, O. (2021) Kinematics and Dynamics of Flexible Robotic Manipulators Using Dual Screws. IEEE Transactions on Robotics, 37, 206-224. https://doi.org/10.1109/tro.2020.3014519 |
[2] | Sun, Y., Zhang, Q. and Chen, X. (2020) Design and Analysis of a Flexible Robotic Hand with Soft Fingers and a Changeable Palm. Advanced Robotics, 34, 1041-1054. https://doi.org/10.1080/01691864.2020.1777197 |
[3] | Tipary, B., Kovács, A. and Erdős, F.G. (2021) Planning and Optimization of Robotic Pick-and-Place Operations in Highly Constrained Industrial Environments. Assembly Automation, 41, 626-639. https://doi.org/10.1108/aa-07-2020-0099 |
[4] | Sun, D. (2003) Position Synchronization of Multiple Motion Axes with Adaptive Coupling Control. Automatica, 39, 997-1005. https://doi.org/10.1016/s0005-1098(03)00037-2 |
[5] | 丁威, 杜钦君, 宋传明, 等. 均值耦合多电机滑模速度同步控制[J]. 西安交通大学学报, 2022, 56(2): 159-170. |
[6] | 张润梅, 罗谷安, 袁彬, 等.多关节机械臂干扰观测器的自适应滑模控制[J]. 机械科学与技术, 2021, 40(10): 1595-1602. |
[7] | 贺志浩, 于海生. 基于自抗扰与观测器的环形耦合多电机协调滑模控制[J]. 微电机, 2021, 54(4): 48-55. |
[8] | 周挺, 徐宇工, 吴斌. 球形机器人的自适应分数阶PIλDμ滑模速度控制方法[J]. 吉林大学学报: 工学版, 2021, 51(2): 728-737. |
[9] | 冯嘉庆, 张蕾, 田冬雨. 基于模糊自适应RBF的机械臂积分滑模控制方法[J]. 西北工业大学学报, 2024, 42(6): 1099-1110. |
[10] | 浦玉学, 古妍, 张崇峰, 等. 柔性机械臂干扰力观测与无模型振动控制[J]. 振动工程学报, 2024, 37(10): 1783-1791. |
[11] | 李小彭, 付嘉兴, 刘海龙, 等. 柔性空间机械臂RBF神经网络补偿滑模控制策略[J]. 东北大学学报(自然科学版), 2024, 45(9): 1258-1267. |
[12] | 苟鑫攀, 杨浩, 宋海鹰, 等. 一种基于奇异摄动理论的鲁棒自适应非仿射非线性控制方法[J]. 系统科学与数学, 2023, 43(11): 2820-2835. |
[13] | 张茜, 王平. 激光传感自适应的装配式建筑机器人轨迹规划[J]. 光学技术, 2024, 50(5): 598-605. |
[14] | 欧宝铭. 基于李雅普诺夫稳定性理论的pH非线性过程控制方法研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2023. |
[15] | 庞伟杰. 液压机械臂模型的非线性振动特性研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2023. |
[16] | 林君哲. 航空发动机液压管路-卡箍系统的非线性振动特性研究[D]: [博士学位论文]. 沈阳: 东北大学, 2018. |