全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大容量储能电芯热特性及热失控预警研究
Research on Thermal Characteristics and Thermal Runaway Early Warning for Large-Capacity Energy Storage Battery Cells

DOI: 10.12677/mos.2025.144326, PP. 749-761

Keywords: 大容量储能电芯,早期预警,膨胀力,热失控
Large-Capacity Energy Storage Battery Cells
, Early Warning, Expansion Force, Thermal Runaway

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究热失控预警及电芯热特性对提高锂离子电池的热安全性具有重要意义。本文以大容量储能电芯为研究对象,首先对大容量储能电芯进行热特性研究,探讨了多种信号作为热失控预警信号的可行性。结果表明,与温度相比,利用膨胀力可以提前386 s检测到电池故障,提前202 s提供热失控预警。这表明在大容量储能电芯使用膨胀力仍然具有良好的可行性。此外,通过不同类型的信号的对比,发现膨胀力信号在大容量储能电芯的热失控预警中是优于其他类型的信号的。同时基于上述的实验数据开发出大容量储能电芯热失控预测模型,热失控起始时间误差小于1%,热失控最高温度误差小于3%。
Investigating thermal runaway early warning and thermal characteristics of battery cells holds significant importance for enhancing the thermal safety of lithium-ion batteries. This study focuses on large-capacity energy storage battery cells, conducting comprehensive thermal characterization to evaluate the feasibility of multi-signal monitoring for thermal runaway prediction. The experimental results demonstrate that compared to temperature signals, expansion force monitoring enables 386 s earlier detection of battery failure and provides a 202 s advance warning for thermal runaway initiation, proving its superior applicability in large-capacity energy storage systems. Through comparative analysis of heterogeneous signals, the expansion force signal exhibits optimal responsiveness in capturing thermal runaway precursors. Furthermore, a predictive model for thermal runaway propagation was developed based on experimental datasets, achieving a prediction error of less than 1% in thermal runaway onset timing and maintaining under 3% deviation in maximum temperature forecasting.

References

[1]  Hong, Y., Wu, H., Wong, S.K., Jin, C., Xu, C., Wang, H., et al. (2024) Dynamic Thermophysical Modeling and Parametric Sensitivity Analysis of Flood Cooling Suppressing the Thermal Runaway Propagation for Electric Bicycle Battery. Journal of Energy Storage, 98, Article ID: 113084.
https://doi.org/10.1016/j.est.2024.113084
[2]  Zheng, Y., Shi, Z., Guo, D., Dai, H. and Han, X. (2021) A Simplification of the Time-Domain Equivalent Circuit Model for Lithium-Ion Batteries Based on Low-Frequency Electrochemical Impedance Spectra. Journal of Power Sources, 489, Article ID: 229505.
https://doi.org/10.1016/j.jpowsour.2021.229505
[3]  Lai, X., Zheng, Y. and Sun, T. (2018) A Comparative Study of Different Equivalent Circuit Models for Estimating State-Of-Charge of Lithium-Ion Batteries. Electrochimica Acta, 259, 566-577.
https://doi.org/10.1016/j.electacta.2017.10.153
[4]  Hong, Y., Jin, C., Chen, S., Xu, C., Wang, H., Wu, H., et al. (2024) Experimental Study of the Suppressing Effect of the Primary Fire and Thermal Runaway Propagation for Electric Bicycle Batteries Using Flood Cooling. Journal of Cleaner Production, 435, Article ID: 140392.
https://doi.org/10.1016/j.jclepro.2023.140392
[5]  Shu, X., Li, G., Shen, J., Lei, Z., Chen, Z. and Liu, Y. (2020) An Adaptive Multi-State Estimation Algorithm for Lithium-Ion Batteries Incorporating Temperature Compensation. Energy, 207, Article ID: 118262.
https://doi.org/10.1016/j.energy.2020.118262
[6]  Li, X.G. and Rui, X. (2018) An Approach to Internal and External Temperature Estimation for Cylindrical Battery Based on Finite Difference Method. IFAC-PapersOnLine, 51, 258-261.
https://doi.org/10.1016/j.ifacol.2018.10.046
[7]  Liu, B., Yin, S. and Xu, J. (2016) Integrated Computation Model of Lithium-Ion Battery Subject to Nail Penetration. Applied Energy, 183, 278-289.
https://doi.org/10.1016/j.apenergy.2016.08.101
[8]  Allafi, W., Zhang, C., Uddin, K., Worwood, D., Dinh, T.Q., Ormeno, P.A., et al. (2018) A Lumped Thermal Model of Lithium-Ion Battery Cells Considering Radiative Heat Transfer. Applied Thermal Engineering, 143, 472-481.
https://doi.org/10.1016/j.applthermaleng.2018.07.105
[9]  Doyle, M., Fuller, T.F. and Newman, J. (2018) Erratum: Modeling of Galvanostatic Charge and Discharge of the Lithium/polymer/insertion Cell [j. Electrochem. Soc.,140, 1526 (1993)]. Journal of The Electrochemical Society, 165, X13-X13.
https://doi.org/10.1149/2.1181811jes
[10]  Xiao, Y. and Fahimi, B. (2014) State-Space Based Multi-Nodes Thermal Model for Lithium-Ion Battery. 2014 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, 15-18 June 2014, 1-7.
https://doi.org/10.1109/itec.2014.6861846
[11]  Tian, N., Fang, H. and Wang, Y. (2019) 3-D Temperature Field Reconstruction for a Lithium-Ion Battery Pack: A Distributed Kalman Filtering Approach. IEEE Transactions on Control Systems Technology, 27, 847-854.
https://doi.org/10.1109/tcst.2017.2779434
[12]  Zhao, Y., Diaz, L.B., Patel, Y., Zhang, T. and Offer, G.J. (2019) How to Cool Lithium Ion Batteries: Optimising Cell Design Using a Thermally Coupled Model. Journal of The Electrochemical Society, 166, A2849-A2859.
https://doi.org/10.1149/2.0501913jes
[13]  Chalise, D., Shah, K., Halama, T., Komsiyska, L. and Jain, A. (2017) An Experimentally Validated Method for Temperature Prediction during Cyclic Operation of a Li-Ion Cell. International Journal of Heat and Mass Transfer, 112, 89-96.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.115
[14]  Samba, A., Omar, N., Gualous, H., Capron, O., Van den Bossche, P. and Van Mierlo, J. (2014) Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling. Electrochimica Acta, 147, 319-329.
https://doi.org/10.1016/j.electacta.2014.08.115
[15]  He, W., Williard, N., Chen, C. and Pecht, M. (2014) State of Charge Estimation for Li-Ion Batteries Using Neural Network Modeling and Unscented Kalman Filter-Based Error Cancellation. International Journal of Electrical Power & Energy Systems, 62, 783-791.
https://doi.org/10.1016/j.ijepes.2014.04.059
[16]  Sahinoglu, G.O., Pajovic, M., Sahinoglu, Z., Wang, Y., Orlik, P.V. and Wada, T. (2018) Battery State-Of-Charge Estimation Based on Regular/Recurrent Gaussian Process Regression. IEEE Transactions on Industrial Electronics, 65, 4311-4321.
https://doi.org/10.1109/tie.2017.2764869
[17]  Chaoui, H. and Ibe-Ekeocha, C.C. (2017) State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks. IEEE Transactions on Vehicular Technology, 66, 8773-8783.
https://doi.org/10.1109/tvt.2017.2715333
[18]  Dong, H., Jin, X., Lou, Y. and Wang, C. (2014) Lithium-Ion Battery State of Health Monitoring and Remaining Useful Life Prediction Based on Support Vector Regression-Particle Filter. Journal of Power Sources, 271, 114-123.
https://doi.org/10.1016/j.jpowsour.2014.07.176
[19]  Yang, D., Zhang, X., Pan, R., Wang, Y. and Chen, Z. (2018) A Novel Gaussian Process Regression Model for State-Of-Health Estimation of Lithium-Ion Battery Using Charging Curve. Journal of Power Sources, 384, 387-395.
https://doi.org/10.1016/j.jpowsour.2018.03.015
[20]  Liu, W., Xu, Y. and Feng, X. (2020) A Hierarchical and Flexible Data-Driven Method for Online State-Of-Health Estimation of Li-Ion Battery. IEEE Transactions on Vehicular Technology, 69, 14739-14748.
https://doi.org/10.1109/tvt.2020.3037088
[21]  Chen, Z., Zhao, H., Zhang, Y., Shen, S., Shen, J. and Liu, Y. (2022) State of Health Estimation for Lithium-Ion Batteries Based on Temperature Prediction and Gated Recurrent Unit Neural Network. Journal of Power Sources, 521, Article ID: 230892.
https://doi.org/10.1016/j.jpowsour.2021.230892

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133