全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于极坐标拉伸的CT胃癌关键特征增广方法
Enhancing Key Features of Gastric Cancer in CT Modality Using Polar Coordinate Stretching

DOI: 10.12677/mos.2025.144325, PP. 736-748

Keywords: 数据增广,胃癌成像,神经网络,数据效率
Data Preprocessing
, Gastric Cancer Imaging, Neural Networks, Data Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:缓解CT影像的切面空间定义域与神经网络特征提取范围不匹配的问题。资料与方法:在临床中收集了7年跨度内被诊断为胃癌的病人在诊疗过程中生成的895例CT影像资料,清洗出689个高质量序列,由第一名医师确定最大癌症负载横断面并进行标注,并由另一名医师进行审核,组建实验数据集。引入一种基于拉伸的图像增广方法,对齐CT横断面定义域与神经网络特征提取范围,最大化利用CT影像序列的定义域外空间进行数据增广,提高训练效率。结果:在使用所提出的增广方法后,神经元前向响应与反向梯度的均匀度得到提升。同等复杂度下,更少的迭代轮次即能达到更优的效果。结论:所提出的增强方法可以提高神经网络在CT模态上的计算效率,在临床识别任务中有一定应用潜力。
Purpose: To address the mismatch between the slice spatial domain of CT images and the feature extraction range of neural networks. Materials and Methods: A total of 895 CT imaging scans from patients diagnosed with gastric cancer over a span of 7 years were collected in clinical practice. After data cleaning, 689 high-quality sequences were obtained. The maximum cancer load slice was determined and annotated by the first physician and reviewed by another physician to form the experimental dataset. A stretching-based image augmentation method was introduced to align the slice domain of CT with the feature extraction range of neural networks, maximizing the use of the extra-domain space of CT image sequences for augmentation and improving training efficiency. Results: After applying the proposed augmentation method, the uniformity of neuronal forward responses and backward gradients was enhanced. Under the same complexity, fewer iterations were required to achieve better results. Conclusion: The proposed augmentation method can improve the computational efficiency of neural networks on CT modality and has potential for application in clinical cancer detection tasks.

References

[1]  祝蕾, 朱坤福. 人工智能在医学影像中的应用及面对的机遇和挑战[J]. 智慧健康, 2021, 7(30): 1-3.
[2]  周翔, 王培军. 中国医学影像人工智能发展现状及展望[J]. 同济大学学报(医学版), 2025, 46(1): 1-7.
[3]  陈冲, 陈俊, 夏黎明. 人工智能促进医学影像临床应用与研究[J]. 放射学实践, 2024, 39(1): 12-16.
[4]  曹玉红, 徐海, 刘荪傲, 等. 基于深度学习的医学影像分割研究综述[J]. 计算机应用, 2021, 41(8): 2273-2287.
[5]  魏小娜, 李英豪, 王振宇, 等. 医学影像人工智能辅助诊断的样本增广方法[J]. 计算机应用, 2019, 39(9): 2558-2567.
[6]  杭利华, 蒋佩钊, 邓冲. 基于仿射变换与B样条自由形变的医学图像配准[J]. 兰州交通大学学报, 2013, 32(3): 44-48+65.
[7]  Zhang, Z., Yang, H., Guo, Y., Bolo, N.R., Keshavan, M., DeRosa, E., et al. (2023) Affine Image Registration of Arterial Spin Labeling MRI Using Deep Learning Networks. NeuroImage, 279, Article 120303.
https://doi.org/10.1016/j.neuroimage.2023.120303
[8]  张颖麟, 胡衍, 东田理沙, 等. 生成对抗式网络及其医学影像应用研究综述[J]. 中国图象图形学报, 2022, 27(3): 687-703.
[9]  周俊林, 洪楠, 张惠茅, 等. 结直肠癌CT影像数据库构建及质量控制专家共识[J]. 中国医学影像学杂志, 2025, 33(1): 1-9.
[10]  Liu, X., Ono, K. and Bise, R. (2023) Mixing Data Augmentation with Preserving Foreground Regions in Medical Image Segmentation. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, 18-21 April 2023, 1-5.
[11]  徐承辉, 张永生. 双源64层CT的质量控制检测分析[J]. 中国医疗器械信息, 2024, 30(18): 164-166.
[12]  任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
[13]  El Jiani, L., El Filali, S. and Benlahmer, E.H. (2022). Overcome Medical Image Data Scarcity by Data Augmentation Techniques: A Review. 2022 International Conference on Microelectronics (ICM), Casablanca, 4-7 December 2022, 21-24.
https://doi.org/10.1109/icm56065.2022.10005544
[14]  Garcea, F., Serra, A., Lamberti, F. and Morra, L. (2023) Data Augmentation for Medical Imaging: A Systematic Literature Review. Computers in Biology and Medicine, 152, Article 106391.
https://doi.org/10.1016/j.compbiomed.2022.106391
[15]  唐翠松, 李励, 邱裕友, 等. 放射影像检查中的医学伦理困境及对策分析[J]. 医学与哲学, 2022, 43(1): 34-37.
[16]  周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
[17]  孟玫, 鲍伟宇, 尤云峰. 磁共振成像与多层螺旋CT诊断对胃癌术前N分期及淋巴结转移的诊断效能及影像学特点分析[J]. 实用医学影像杂志, 2024, 25(1): 29-32.
[18]  朱艳琳, 黄陈恕, 孙宗琼. CT灌注成像在胃癌诊断中的临床应用[J]. 医学影像学杂志, 2015, 25(7): 1194-1198.
[19]  Sun, G., Pan, Y., Kong, W., Xu, Z., Ma, J., Racharak, T., et al. (2024) Da-Transunet: Integrating Spatial and Channel Dual Attention with Transformer U-Net for Medical Image Segmentation. Frontiers in Bioengineering and Biotechnology, 12, Article 1398237.
https://doi.org/10.3389/fbioe.2024.1398237
[20]  Roy, S., Koehler, G., Ulrich, C., Baumgartner, M., Petersen, J., Isensee, F., et al. (2023) Mednext: Transformer-Driven Scaling of Convnets for Medical Image Segmentation. In: Greenspan, H., et al., Eds., Lecture Notes in Computer Science, Springer, 405-415.
https://doi.org/10.1007/978-3-031-43901-8_39
[21]  司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890-1920.
[22]  尚骏远, 杨乐涵, 何琨. 基于特征可视化分析深度神经网络的内部表征[J]. 计算机科学, 2020, 47(5): 190-197.
[23]  白林亭, 海钰琳. 基于梯度分析的卷积神经网络可视化方法[J]. 信息技术与信息化, 2021(4): 61-63.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133