全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于水下湍流关联成像的方法对比及神经网络去模糊研究
Comparison of Underwater Turbulence Correlation Imaging Methods and Neural Network Deblurring Research

DOI: 10.12677/mos.2025.144324, PP. 726-735

Keywords: 水下湍流,关联成像,深度学习,去模糊,生成对抗网络
Underwater Turbulence
, Correlation Imaging, Deep Learning, Deblurring, Generative Adversarial Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

水下湍流对光学成像的影响主要表现为光波在传播过程中因湍流的相位扰动而导致的散斑、模糊及失真现象,这严重制约了传统成像方法在水下环境中的应用。通过相位屏模型可以有效模拟水下湍流对光传播的影响,为研究水下湍流条件下的成像技术提供仿真基础。关联成像技术凭借其无需直接探测目标、对弱光灵敏以及抗干扰能力强的特点,展现出在湍流环境下的应用潜力。本研究将湍流相位屏模型与三种基于哈达玛矩阵的关联成像方法(传统方法、小波变换方法、切蛋糕方法)相结合,分别对比三种方法在不同湍流强度下的成像性能。随后,为进一步提升成像质量,将经过湍流关联成像后的模糊图像输入条件生成对抗网络中,进行去噪与复原处理,探索人工智能技术在水下湍流成像优化中的可行性与优势。实验结果表明,结合深度学习的关联成像方法可显著提高湍流环境下的成像质量,为水下光学成像的实际应用提供了一种高效的解决方案。
Underwater turbulence affects optical imaging primarily through speckle, blurring, and distortion caused by phase disturbances in light waves during propagation, which severely limits the application of traditional imaging methods in underwater environments. The phase screen model can effectively simulate the impact of underwater turbulence on light propagation, providing a simulation foundation for the study of imaging technology under turbulence conditions. Correlation imaging technology, with its ability to detect targets indirectly, high sensitivity to weak light, and strong anti-interference capabilities, shows extensive potential in turbulent environments. This study combines the turbulence phase screen model with three correlation imaging methods based on Hadamard matrices (traditional method, wavelet transform method, and cake-cutting method), systematically comparing their imaging performance under different turbulence intensities. Subsequently, to further improve image quality, the blurred images obtained through turbulence correlation imaging are input into a conditional generative adversarial network for denoising and restoration, exploring the feasibility and advantages of artificial intelligence in optimizing underwater turbulence imaging. The experimental results demonstrate that the combination of deep learning and correlation imaging significantly improves imaging quality in turbulent environments, providing an efficient solution for practical underwater optical imaging applications.

References

[1]  Klyshko, D.N. (1988) Two-Photon Light: Influence of Filtration and a New Possible EPR Experiment. Physics Letters A, 128, 133-137.
https://doi.org/10.1016/0375-9601(88)90895-x

[2]  Pittman, T.B., Shih, Y.H., Strekalov, D.V. and Sergienko, A.V. (1995) Optical Imaging by Means of Two-Photon Quantum Entanglement. Physical Review A, 52, R3429-R3432.
https://doi.org/10.1103/physreva.52.r3429

[3]  Shapiro, J.H. (2008) Computational Ghost Imaging. Physical Review A, 78, Article ID: 061802.
https://doi.org/10.1103/physreva.78.061802

[4]  仲亚军, 刘娇, 梁文强, 等. 针对多散斑图的差分压缩鬼成像方案研究[J]. 物理学报, 2015, 64(1): 96-102.
[5]  Zhao, S. and Zhuang, P. (2014) Correspondence Normalized Ghost Imaging on Compressive Sensing. Chinese Physics B, 23, 054203.
https://doi.org/10.1088/1674-1056/23/5/054203

[6]  Meyers, R.E., Deacon, K.S. and Shih, Y. (2012) Positive-Negative Turbulence-Free Ghost Imaging. Applied Physics Letters, 100, Article ID: 131114.
https://doi.org/10.1063/1.3698158

[7]  李畅, 高超, 邵嘉琪, 等. 基于压缩感知重构算法的哈达玛鬼成像[J]. 激光与光电子学进展, 2021, 58(10): 354-361.
[8]  Yuan, X., Zhang, L., Chen, J., Wang, K. and Zhang, D. (2019) Multiple-Image Encryption Scheme Based on Ghost Imaging of Hadamard Matrix and Spatial Multiplexing. Applied Physics B, 125, Article No. 174.
https://doi.org/10.1007/s00340-019-7286-9

[9]  Yu, W. (2019) Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort. Sensors, 19, Article 4122.
https://doi.org/10.3390/s19194122

[10]  Wu, H., Zhao, G., He, C., Cheng, L. and Luo, S. (2022) Sub-Nyquist Underwater Denoising Ghost Imaging with a Coiflet-Wavelet-Order-Based Hadamard Matrix. Physical Review A, 106, Article ID: 053522.
https://doi.org/10.1103/physreva.106.053522

[11]  Ohya, Y., Neff, D.E. and Meroney, R.N. (1997) Turbulence Structure in a Stratified Boundary Layer under Stable Conditions. Boundary-Layer Meteorology, 83, 139-162.
https://doi.org/10.1023/a:1000205523873

[12]  Garwood, R.W. (1977) An Oceanic Mixed Layer Model Capable of Simulating Cyclic States. Journal of Physical Oceanography, 7, 455-468.
https://doi.org/10.1175/1520-0485(1977)007<0455:aomlmc>2.0.co;2

[13]  Nikishov, V.V. and Nikishov, V.I. (2000) Spectrum of Turbulent Fluctuations of the Sea-Water Refraction Index. International Journal of Fluid Mechanics Research, 27, 82-98.
https://doi.org/10.1615/interjfluidmechres.v27.i1.70

[14]  杨天星, 赵生妹. 海洋湍流随机相位屏模型[J]. 光学学报, 2017, 37(12): 9-14.
[15]  Wang, L. and Zhao, S. (2016) Fast Reconstructed and High-Quality Ghost Imaging with Fast Walsh-Hadamard Transform. Photonics Research, 4, 240-244.
https://doi.org/10.1364/prj.4.000240

[16]  Lu, M.H., Shen, X. and Han, S.S. (2011) Ghost Imaging via Compressive Sampling Based on Digital Micromirror Device. Acta Optica Sinica, 31, Article ID: 0711002.
https://doi.org/10.3788/aos201131.0711002

[17]  Clemente, P., Durán, V., Torres-Company, V., Tajahuerce, E. and Lancis, J. (2010) Optical Encryption Based on Computational Ghost Imaging. Optics Letters, 35, 2391-2393.
https://doi.org/10.1364/ol.35.002391

[18]  Katkovnik, V. and Astola, J. (2012) Compressive Sensing Computational Ghost Imaging. Journal of the Optical Society of America A, 29, 1556-1567.
https://doi.org/10.1364/josaa.29.001556

[19]  Liu, Z., Tan, S., Wu, J., Li, E., Shen, X. and Han, S. (2016) Spectral Camera Based on Ghost Imaging via Sparsity Constraints. Scientific Reports, 6, Article No. 25718.
https://doi.org/10.1038/srep25718

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133