全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于用户评分数据的多维度电影推荐系统研究
Research on Multi-Dimensional Movie Recommendation System Based on User Rating Data

DOI: 10.12677/hjdm.2025.152017, PP. 201-211

Keywords: 个性化推荐,相似度计算,余弦相似度,皮尔逊相似度,欧几里得距离,Jaccard相似度,电影推荐,多维度推荐算法
Personalized Recommendation
, Similarity Computation, Cosine Similarity, Pearson Correlation, Euclidean Distance, Jaccard Similarity, Movie Recommendation, Multi-Dimensional Recommendation Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着个性化推荐系统在各类应用中的广泛应用,电影推荐作为其中的典型场景,受到了越来越多的关注。推荐系统的核心任务是根据用户的历史行为数据,特别是评分数据,来为用户提供个性化的推荐。推荐效果的好坏与相似度计算方法的选择密切相关。常见的相似度计算方法包括余弦相似度、皮尔逊相似度、欧几里得距离和Jaccard相似度。每种方法有其独特的特点和适用场景,但单一使用某种相似度方法往往会受到数据特性和环境的限制,导致推荐性能的下降。本文通过系统地比较和分析这四种相似度计算方法在不同环境下的表现,探讨了它们在电影推荐中的应用效果。研究表明,在不同数据场景下(如稀疏数据、新用户、活跃用户等),合理组合不同相似度计算方法的比例,能够克服单一方法的局限性,显著提高推荐系统的准确性和质量。通过实验验证,我们发现基于加权组合的多维度推荐方法,相较于单一相似度方法,能够在不同推荐场景中提升推荐系统的综合表现。
With the widespread adoption of personalized recommendation systems in various applications, movie recommendation as a typical scenario has attracted increasing attention. The core task of recommendation systems lies in providing personalized suggestions based on users’ historical behavioral data, particularly rating data. The effectiveness of recommendations is closely tied to the selection of similarity computation methods. Common approaches include cosine similarity, Pearson correlation, Euclidean distance, and Jaccard similarity. While each method has unique characteristics and applicable scenarios, relying solely on a single similarity measure often leads to performance degradation due to data-specific limitations and environmental constraints. This study systematically compares and analyzes the performance of these four similarity computation methods under different environmental conditions, exploring their application effectiveness in movie recommendations. The research demonstrates that rationally combining multiple similarity measures with weighted proportions can overcome the limitations of individual methods and significantly enhance recommendation accuracy and quality across diverse data scenarios (e.g., sparse data, new users, and active users). Experimental results verify that the proposed multi-dimensional recommendation method based on weighted combinations outperforms single similarity approaches in improving comprehensive system performance across various recommendation scenarios.

References

[1]  马超, 张力, 赵祥, 等. 基于协同过滤的个性化推荐算法研究[J]. 计算机科学, 2017, 44(5): 125-130.
[2]  Aggarwal, C.C. (2016) Recommender Systems: The Textbook. Springer.
https://doi.org/10.1007/978-3-319-29659-3
[3]  Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001). Item-Based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web, New York, 1-5 May 2001, 285-295.
https://doi.org/10.1145/371920.372071
[4]  黄向春, 刘洋, 王浩. 基于多相似度融合的协同过滤冷启动优化方法[J]. 计算机学报, 2022, 45(10): 2105-2114.
[5]  周正乾, 张伟, 陈林. 社交网络中融合信任与多维度相似度的推荐模型[J]. 软件学报, 2023, 34(3): 567-580.
[6]  Cremonesi, P., Koren, Y. and Turrin, R. (2010) Performance of Recommender Algorithms on Top-N Recommendation Tasks. Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, 26-30 September 2010, 39-46.
https://doi.org/10.1145/1864708.1864721
[7]  GroupLens Research (2009) MovieLens Dataset.
https://grouplens.org/datasets/movielens/
[8]  Powers, D. (2011) Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. Journal of Machine Learning Technologies, 2, 37-63.
[9]  Kruskal, W.H. and Wallis, W.A. (1952) Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47, 583-621.
https://doi.org/10.1080/01621459.1952.10483441
[10]  Mann, H.B. and Whitney, D.R. (1947) On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18, 50-60.
https://doi.org/10.1214/aoms/1177730491
[11]  Xue, H., Dai, X., Zhang, J., Huang, S. and Chen, J. (2017) Deep Matrix Factorization Models for Recommender Systems. Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 19-25 August 2017, Melbourne, 3203-3209.
https://doi.org/10.24963/ijcai.2017/447
[12]  Bobadilla, J., Ortega, F., Hernando, A. and Gutiérrez, A. (2013) Recommender Systems Survey. Knowledge-Based Systems, 46, 109-132.
https://doi.org/10.1016/j.knosys.2013.03.012
[13]  Breese, J.S., Heckerman, D. and Kadie, C. (1998) Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI), San Francisco, 24-26 July 1998, 43-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133