|
有机发光自由基研究进展
|
Abstract:
有机自由基分子因其独特的开壳性质,具有很好的反应活性,但也因此容易发生如抽氢、二聚化等反应,使自由基分子活性丧失。而1900年,三苯甲基自由基的首次报道证实了三苯甲基自由基分子可以稳定存在于室温中,拉开了研究自由基分子的序幕。在研究者持续的努力下,通过合理的分子设计使自由基分子能在室温下稳定存在,并且具有良好的荧光量子效率。发光自由基分子因为其独特的光、电和磁学等性质在诸多领域存在广泛的潜在方面。回顾总结关于有机发光自由基的研究发展现状。
Organic free radical molecules have good reactivity because of their unique shell-opening properties, but they are also prone to reactions such as hydrogen extraction and dimerization, which makes the activity of free radical molecules lose. In 1900, the first report of trityl radical confirmed that trityl radical molecules can exist stably at room temperature, which opened the prelude to the study of free radical molecules. With the continuous efforts of researchers, free radical molecules can exist stably at room temperature with good fluorescence quantum efficiency through reasonable molecular design. Luminescent radical molecules have a wide range of potential aspects in many fields because of their unique optical, electrical and magnetic properties. Review and summarize the research and development status of organic luminescent free radicals.
[1] | Forrester, A.R., Hay, J.M. and Thomson, R.H. (1968) Organic Chemistry of Stable Free Radicals. Academic Press. |
[2] | Hicks, R.G. (2007) What’s New in Stable Radical Chemistry? Organic & Biomolecular Chemistry, 5, 1321-1338. https://doi.org/10.1039/b617142g |
[3] | Ratera, I. and Veciana, J. (2012) Playing with Organic Radicals as Building Blocks for Functional Molecular Materials. Chemical Society Reviews, 41, 303-349. https://doi.org/10.1039/c1cs15165g |
[4] | Kumar, S., Kumar, Y., Keshri, S. and Mukhopadhyay, P. (2016) Recent Advances in Organic Radicals and Their Magnetism. Magnetochemistry, 2, Article 42. https://doi.org/10.3390/magnetochemistry2040042 |
[5] | Friebe, C. and Schubert, U.S. (2017) High-Power-Density Organic Radical Batteries. Topics in Current Chemistry, 375, Article No. 19. https://doi.org/10.1007/s41061-017-0103-1 |
[6] | Kato, K. and Osuka, A. (2019) Platforms for Stable Carbon‐Centered Radicals. Angewandte Chemie International Edition, 58, 8978-8986. https://doi.org/10.1002/anie.201900307 |
[7] | Ji, L., Shi, J., Wei, J., Yu, T. and Huang, W. (2020) Air‐Stable Organic Radicals: New‐Generation Materials for Flexible Electronics? Advanced Materials, 32, Article ID: 1908015. https://doi.org/10.1002/adma.201908015 |
[8] | Yuan, D., Liu, W. and Zhu, X. (2021) Design and Applications of Single-Component Radical Conductors. Chem, 7, 333-357. https://doi.org/10.1016/j.chempr.2020.10.001 |
[9] | Deumal, M., Vela, S., Fumanal, M., Ribas-Arino, J. and Novoa, J.J. (2021) Insights into the Magnetism and Phase Transitions of Organic Radical-Based Materials. Journal of Materials Chemistry C, 9, 10624-10646. https://doi.org/10.1039/d1tc01376a |
[10] | Gomberg, M. (1900) An Instance of Trivalent Carbon: Triphenylmethyl. Journal of the American Chemical Society, 22, 757-771. https://doi.org/10.1021/ja02049a006 |
[11] | Schlenk, W., Weickel, T. and Herzenstein, A. (1910) Ueber Triphenylmethyl und Analoga des Triphenylmethyls in der Biphenylreihe. Justus Liebigs Annalen der Chemie, 372, 1-20. https://doi.org/10.1002/jlac.19103720102 |
[12] | Mas-Torrent, M., Crivillers, N., Mugnaini, V., Ratera, I., Rovira, C. and Veciana, J. (2009) Organic Radicals on Surfaces: Towards Molecular Spintronics. Journal of Materials Chemistry, 19, 1691-1695. https://doi.org/10.1039/b809875a |
[13] | Colvin, M.T., Giacobbe, E.M., Cohen, B., Miura, T., Scott, A.M. and Wasielewski, M.R. (2010) Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent Tempo-Perylene-3,4:9,10-Bis(Dicarboximide) Dyads: Unusual Spin Polarization Resulting from the Radical-Triplet Interaction. The Journal of Physical Chemistry A, 114, 1741-1748. https://doi.org/10.1021/jp909212c |
[14] | Sanvito, S. (2011) Molecular Spintronics. Chemical Society Reviews, 40, 3336-3355. https://doi.org/10.1039/c1cs15047b |
[15] | Souto, M., Calbo, J., Ratera, I., Ortí, E. and Veciana, J. (2017) Tetrathiafulvalene-Polychlorotriphenylmethyl Dyads: Influence of Bridge and Open‐Shell Characteristics on Linear and Nonlinear Optical Properties. Chemistry—A European Journal, 23, 11067-11075. https://doi.org/10.1002/chem.201701623 |
[16] | Xu, F., Xu, H., Chen, X., Wu, D., Wu, Y., Liu, H., et al. (2015) Radical Covalent Organic Frameworks: A General Strategy to Immobilize Open‐accessible Polyradicals for High‐Performance Capacitive Energy Storage. Angewandte Chemie International Edition, 54, 6814-6818. https://doi.org/10.1002/anie.201501706 |
[17] | Morita, Y., Nishida, S., Murata, T., Moriguchi, M., Ueda, A., Satoh, M., et al. (2011) Organic Tailored Batteries Materials Using Stable Open-Shell Molecules with Degenerate Frontier Orbitals. Nature Materials, 10, 947-951. https://doi.org/10.1038/nmat3142 |
[18] | Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. and Nishide, H. (2009) Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery. Advanced Materials, 21, 1627-1630. https://doi.org/10.1002/adma.200803073 |
[19] | Nishide, H. and Oyaizu, K. (2008) Toward Flexible Batteries. Science, 319, 737-738. https://doi.org/10.1126/science.1151831 |
[20] | Awaga, K. and Maruyama, Y. (1989) Ferromagnetic and Antiferromagnetic Intermolecular Interactions of Organic Radicals, α-Nitronyl Nitroxides. II. The Journal of Chemical Physics, 91, 2743-2747. https://doi.org/10.1063/1.456984 |
[21] | Banister, A.J., Bricklebank, N., Lavender, I., Rawson, J.M., Gregory, C.I., Tanner, B.K., et al. (1996) Spontaneous Magnetization in a Sulfur-Nitrogen Radical at 36 K. Angewandte Chemie International Edition in English, 35, 2533-2535. https://doi.org/10.1002/anie.199625331 |
[22] | Train, C., Gruselle, M. and Verdaguer, M. (2011) The Fruitful Introduction of Chirality and Control of Absolute Configurations in Molecular Magnets. Chemical Society Reviews, 40, 3297-3312. https://doi.org/10.1039/c1cs15012j |
[23] | Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D.J., Giannella, E., et al. (1994) Three-Dimensional Spectral-Spatial EPR Imaging of Free Radicals in the Heart: A Technique for Imaging Tissue Metabolism and Oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 91, 3388-3392. https://doi.org/10.1073/pnas.91.8.3388 |
[24] | Dhimitruka, I., Velayutham, M., Bobko, A.A., Khramtsov, V.V., Villamena, F.A., Hadad, C.M., et al. (2007) Large-scale Synthesis of a Persistent Trityl Radical for Use in Biomedical EPR Applications and Imaging. Bioorganic & Medicinal Chemistry Letters, 17, 6801-6805. https://doi.org/10.1016/j.bmcl.2007.10.030 |
[25] | Keana, J.F.W. (1978) Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chemical Reviews, 78, 37-64. https://doi.org/10.1021/cr60311a004 |
[26] | Bagryanskaya, E.G. and Marque, S.R.A. (2014) Scavenging of Organic C-Centered Radicals by Nitroxides. Chemical Reviews, 114, 5011-5056. https://doi.org/10.1021/cr4000946 |
[27] | Bin, Z., Duan, L. and Qiu, Y. (2015) Air Stable Organic Salt as an N-Type Dopant for Efficient and Stable Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 7, 6444-6450. https://doi.org/10.1021/acsami.5b00839 |
[28] | Bin, Z., Liu, Z., Wei, P., Duan, L. and Qiu, Y. (2016) Using an Organic Radical Precursor as an Electron Injection Material for Efficient and Stable Organic Light-Emitting Diodes. Nanotechnology, 27, Article ID: 174001. https://doi.org/10.1088/0957-4484/27/17/174001 |
[29] | Peng, Q., Obolda, A., Zhang, M. and Li, F. (2015) Organic Light‐Emitting Diodes Using a Neutral Π Radical as Emitter: The Emission from a Doublet. Angewandte Chemie International Edition, 54, 7091-7095. https://doi.org/10.1002/anie.201500242 |
[30] | Obolda, A., Ai, X., Zhang, M. and Li, F. (2016) Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral π-Radical. ACS Applied Materials & Interfaces, 8, 35472-35478. https://doi.org/10.1021/acsami.6b12338 |
[31] | Neier, E., Arias Ugarte, R., Rady, N., Venkatesan, S., Hudnall, T.W. and Zakhidov, A. (2017) Solution-Processed Organic Light-Emitting Diodes with Emission from a Doublet Exciton; Using (2, 4, 6-Trichlorophenyl)methyl as Emitter. Organic Electronics, 44, 126-131. https://doi.org/10.1016/j.orgel.2017.02.010 |
[32] | Mesa, J.A., Velázquez-Palenzuela, A., Brillas, E., Coll, J., Torres, J.L. and Juliá, L. (2012) Preparation and Characterization of Persistent Maltose-Conjugated Triphenylmethyl Radicals. The Journal of Organic Chemistry, 77, 1081-1086. https://doi.org/10.1021/jo202356u |
[33] | Bobko, A.A., Dhimitruka, I., Zweier, J.L. and Khramtsov, V.V. (2007) Trityl Radicals as Persistent Dual Function pH and Oxygen Probes for in Vivo Electron Paramagnetic Resonance Spectroscopy and Imaging: Concept and Experiment. Journal of the American Chemical Society, 129, 7240-7241. https://doi.org/10.1021/ja071515u |
[34] | Cao, Q., Dornan, L.M., Rogan, L., Hughes, N.L. and Muldoon, M.J. (2014) Aerobic Oxidation Catalysis with Stable Radicals. Chemical Communications, 50, 4524-4543. https://doi.org/10.1039/c3cc47081d |
[35] | Jiao, Y., Li, W., Xu, J., Wang, G., Li, J., Wang, Z., et al. (2016) A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 128, 9079-9083. https://doi.org/10.1002/ange.201603182 |
[36] | Sheldon, R.A., Arends, I.W.C.E., ten Brink, G. and Dijksman, A. (2002) Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35, 774-781. https://doi.org/10.1021/ar010075n |
[37] | Aliaga, C., Aspée, A. and Scaiano, J.C. (2003) A New Method to Study Antioxidant Capability: Hydrogen Transfer from Phenols to a Prefluorescent Nitroxide. Organic Letters, 5, 4145-4148. https://doi.org/10.1021/ol035589w |
[38] | Braunecker, W.A. and Matyjaszewski, K. (2007) Controlled/living Radical Polymerization: Features, Developments, and Perspectives. Progress in Polymer Science, 32, 93-146. https://doi.org/10.1016/j.progpolymsci.2006.11.002 |
[39] | Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D. and Charleux, B. (2013) Nitroxide-Mediated Polymerization. Progress in Polymer Science, 38, 63-235. https://doi.org/10.1016/j.progpolymsci.2012.06.002 |
[40] | Matyjaszewski, K. and Xia, J. (2001) Atom Transfer Radical Polymerization. Chemical Reviews, 101, 2921-2990. https://doi.org/10.1021/cr940534g |
[41] | Moad, G., Rizzardo, E. and Thang, S.H. (2008) Radical Addition-Fragmentation Chemistry in Polymer Synthesis. Polymer, 49, 1079-1131. https://doi.org/10.1016/j.polymer.2007.11.020 |
[42] | Khramtsov, V.V., Yelinova (Popova), V.I., Weiner, L.M., Berezina, T.A., Martin, V.V. and Volodarsky, L.B. (1989) Quantitative Determination of SH Groups in Low-and High-Molecular-Weight Compounds by an Electron Spin Resonance Method. Analytical Biochemistry, 182, 58-63. https://doi.org/10.1016/0003-2697(89)90718-5 |
[43] | Koelsch, C.F. (1957) Syntheses with Triarylvinylmagnesium Bromides. α, γ-Bisdiphenylene-β-Phenylallyl, a Stable Free Radical. Journal of the American Chemical Society, 79, 4439-4441. https://doi.org/10.1021/ja01573a053 |
[44] | Kuhn, R. and Neugebauer, A. (1964) Über substituierte Bis-biphenylen-allyl-Radikale. Monatshefte für Chemie, 95, 3-23. https://doi.org/10.1007/bf00909246 |
[45] | Miura, Y., Tomimura, T., Matsuba, N., Tanaka, R., Nakatsuji, M. and Teki, Y. (2001) First Isolation of Monomeric n-Alkoxyarylaminyl Radicals and Their Chemical and Magnetic Properties. The Journal of Organic Chemistry, 66, 7456-7463. https://doi.org/10.1021/jo0106288 |
[46] | Fischer, H. (2005) Nitroxide Radicals and Nitroxide Based High-Spin Systems. Springer. |
[47] | Pope, M. and Swenberg, C.E. (1999) Electronic Processes in Organic Crystals and Polymers. Oxford University Press. |
[48] | Baldo, M.A., O’Brien, D.F., Thompson, M.E. and Forrest, S.R. (1999) Excitonic Singlet-Triplet Ratio in a Semiconducting Organic Thin Film. Physical Review B, 60, 14422-14428. https://doi.org/10.1103/physrevb.60.14422 |
[49] | Chen, Z.X., Li, Y. and Huang, F. (2021) Persistent and Stable Organic Radicals: Design, Synthesis, and Applications. Chem, 7, 288-332. https://doi.org/10.1016/j.chempr.2020.09.024 |
[50] | Zhang, K., Monteiro, M.J. and Jia, Z. (2016) Stable Organic Radical Polymers: Synthesis and Applications. Polymer Chemistry, 7, 5589-5614. https://doi.org/10.1039/c6py00996d |
[51] | Nguyen, T.P., Easley, A.D., Kang, N., Khan, S., Lim, S., Rezenom, Y.H., et al. (2021) Polypeptide Organic Radical Batteries. Nature, 593, 61-66. https://doi.org/10.1038/s41586-021-03399-1 |
[52] | Xie, Y., Zhang, K., Yamauchi, Y., Oyaizu, K. and Jia, Z. (2021) Nitroxide Radical Polymers for Emerging Plastic Energy Storage and Organic Electronics: Fundamentals, Materials, and Applications. Materials Horizons, 8, 803-829. https://doi.org/10.1039/d0mh01391a |
[53] | Kawata, S., Pu, Y., Saito, A., Kurashige, Y., Beppu, T., Katagiri, H., et al. (2015) Singlet Fission of Non‐Polycyclic Aromatic Molecules in Organic Photovoltaics. Advanced Materials, 28, 1585-1590. https://doi.org/10.1002/adma.201504281 |
[54] | Phan, H., Herng, T.S., Wang, D., Li, X., Zeng, W., Ding, J., et al. (2019) Room-Temperature Magnets Based on 1, 3, 5-Triazine-Linked Porous Organic Radical Frameworks. Chem, 5, 1223-1234. https://doi.org/10.1016/j.chempr.2019.02.024 |
[55] | Thorarinsdottir, A.E. and Harris, T.D. (2020) Metal-Organic Framework Magnets. Chemical Reviews, 120, 8716-8789. https://doi.org/10.1021/acs.chemrev.9b00666 |
[56] | Lü, B., Chen, Y., Li, P., Wang, B., Müllen, K. and Yin, M. (2019) Stable Radical Anions Generated from a Porous Perylenediimide Metal-Organic Framework for Boosting Near-Infrared Photothermal Conversion. Nature Communications, 10, Article No. 767. https://doi.org/10.1038/s41467-019-08434-4 |
[57] | Chan, J.M.W., Wojtecki, R.J., Sardon, H., Lee, A.L.Z., Smith, C.E., Shkumatov, A., et al. (2017) Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers. ACS Macro Letters, 6, 176-180. https://doi.org/10.1021/acsmacrolett.6b00924 |
[58] | Ballester, M., Riera-Figueras, J. and Rodríguez-Siurana, A. (1970) Synthesis and Isolation of a Perchlorotriphenylcarbonium Salt. Tetrahedron Letters, 11, 3615-3618. https://doi.org/10.1016/s0040-4039(01)98542-9 |
[59] | Ballester, M., Riera-Figueras, J., Castaner, J., Badfa, C. and Monso, J.M. (1971) Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. Journal of the American Chemical Society, 93, 2215-2225. https://doi.org/10.1021/ja00738a021 |
[60] | Armet, O., Veciana, J., Rovira, C., Riera, J., Castaner, J., Molins, E., et al. (1987) Inert Carbon Free Radicals. 8. Polychlorotriphenylmethyl Radicals: Synthesis, Structure, and Spin-Density Distribution. The Journal of Physical Chemistry, 91, 5608-5616. https://doi.org/10.1021/j100306a023 |
[61] | Fox, M.A., Gaillard, E. and Chen, C.C. (1987) Photochemistry of Stable Free Radicals: The Photolysis of Perchlorotriphenylmethyl Radicals. Journal of the American Chemical Society, 109, 7088-7094. https://doi.org/10.1021/ja00257a030 |
[62] | Gamero, V., Velasco, D., Latorre, S., López-Calahorra, F., Brillas, E. and Juliá, L. (2006) [4-(n-Carbazolyl)-2, 6-Dichlorophenyl]bis(2,4,6-Trichlorophenyl)methyl Radical an Efficient Red Light-Emitting Paramagnetic Molecule. Tetrahedron Letters, 47, 2305-2309. https://doi.org/10.1016/j.tetlet.2006.02.022 |
[63] | López, M., Velasco, D., López-Calahorra, F. and Juliá, L. (2008) Light-emitting Persistent Radicals for Efficient Sensor Devices of Solvent Polarity. Tetrahedron Letters, 49, 5196-5199. https://doi.org/10.1016/j.tetlet.2008.06.040 |
[64] | Hattori, Y., Kusamoto, T. and Nishihara, H. (2014) Luminescence, Stability, and Proton Response of an Open‐Shell (3,5‐Dichloro‐4‐Pyridyl)bis(2,4,6‐Trichlorophenyl)methyl Radical. Angewandte Chemie International Edition, 53, 11845-11848. https://doi.org/10.1002/anie.201407362 |
[65] | Hattori, Y., Kusamoto, T. and Nishihara, H. (2015) Highly Photostable Luminescent Open-Shell (3, 5-Dihalo-4-Pyridyl)bis(2,4,6-Trichlorophenyl)methyl Radicals: Significant Effects of Halogen Atoms on Their Photophysical and Photochemical Properties. RSC Advances, 5, 64802-64805. https://doi.org/10.1039/c5ra14268g |
[66] | Hattori, Y., Kusamoto, T. and Nishihara, H. (2015) Enhanced Luminescent Properties of an Open‐Shell (3, 5‐Dichloro‐4‐Pyridyl)bis(2,4,6‐Trichlorophenyl)methyl Radical by Coordination to Gold. Angewandte Chemie International Edition, 54, 3731-3734. https://doi.org/10.1002/anie.201411572 |
[67] | Ai, X., Chen, Y., Feng, Y. and Li, F. (2018) A Stable Room‐Temperature Luminescent Biphenylmethyl Radical. Angewandte Chemie International Edition, 57, 2869-2873. https://doi.org/10.1002/anie.201713321 |
[68] | Kimura, S., Tanushi, A., Kusamoto, T., Kochi, S., Sato, T. and Nishihara, H. (2018) A Luminescent Organic Radical with Two Pyridyl Groups: High Photostability and Dual Stimuli-Responsive Properties, with Theoretical Analyses of Photophysical Processes. Chemical Science, 9, 1996-2007. https://doi.org/10.1039/c7sc04034b |
[69] | Liu, C., Hamzehpoor, E., Sakai‐Otsuka, Y., Jadhav, T. and Perepichka, D.F. (2020) A Pure‐Red Doublet Emission with 90% Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie International Edition, 59, 23030-23034. https://doi.org/10.1002/anie.202009867 |
[70] | Sheldon, R.A., Arends, I.W.C.E., ten Brink, G. and Dijksman, A. (2002) Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35, 774-781. https://doi.org/10.1021/ar010075n |
[71] | Tebben, L. and Studer, A. (2011) Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angewandte Chemie International Edition, 50, 5034-5068. https://doi.org/10.1002/anie.201002547 |
[72] | Grubbs, R.B. (2011) Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polymer Reviews, 51, 104-137. https://doi.org/10.1080/15583724.2011.566405 |
[73] | Wertz, S. and Studer, A. (2013) Nitroxide-Catalyzed Transition-Metal-Free Aerobic Oxidation Processes. Green Chemistry, 15, 3116-3134. https://doi.org/10.1039/c3gc41459k |
[74] | Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D. and Charleux, B. (2013) Nitroxide-Mediated Polymerization. Progress in Polymer Science, 38, 63-235. https://doi.org/10.1016/j.progpolymsci.2012.06.002 |
[75] | Beaulac, R., Bussière, G., Reber, C., Lescop, C. and Luneau, D. (2003) Solid-State Absorption and Luminescence Spectroscopy of Nitronyl Nitroxide Radicals. New Journal of Chemistry, 27, 1200-1206. https://doi.org/10.1039/b301479g |
[76] | Beaulac, R., Luneau, D. and Reber, C. (2005) The Emitting State of the Imino Nitroxide Radical. Chemical Physics Letters, 405, 153-158. https://doi.org/10.1016/j.cplett.2005.02.024 |
[77] | Wang, Y., Gao, Y., Ma, Y., Wang, Q., Li, L. and Liao, D. (2013) Syntheses, Crystal Structures, Magnetic and Luminescence Properties of Five Novel Lanthanide Complexes of Nitronyl Nitroxide Radical. Journal of Solid State Chemistry, 202, 276-281. https://doi.org/10.1016/j.jssc.2013.03.052 |
[78] | Tretyakov, E.V., Plyusnin, V.F., Suvorova, A.O., Larionov, S.V., Popov, S.A., Antonova, O.V., et al. (2014) Luminescence of the Nitronyl Nitroxide Radical Group in a Spin-Labelled Pyrazolylquinoline. Journal of Luminescence, 148, 33-38. https://doi.org/10.1016/j.jlumin.2013.11.017 |
[79] | Wang, Z., Zou, X., Xie, Y., Zhang, H., Hu, L., Chan, C.C.S., et al. (2022) A Nonconjugated Radical Polymer with Stable Red Luminescence in the Solid State. Materials Horizons, 9, 2564-2571. https://doi.org/10.1039/d2mh00808d |
[80] | Kuhn, R., Neugebauer, F.A. and Trischmann, H. (1966) Stabile N-Haltige Biradikale und Triradikale. Monatshefte fur Chemie, 97, 525-553. https://doi.org/10.1007/bf00905273 |
[81] | Hicks, R.G. and Hooper, R. (1998) Synthesis and EPR Characterization of “Phosphaverdazyl” Radicals. Inorganic Chemistry, 38, 284-286. https://doi.org/10.1021/ic980985+ |
[82] | Ballester, M., Riera-Figueras, J., Castaner, J., Badfa, C. and Monso, J.M. (1971) Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. Journal of the American Chemical Society, 93, 2215-2225. https://doi.org/10.1021/ja00738a021 |
[83] | Ballester, M., Castañer, J. and Olivella, S. (1974) Syntheses and Isolation of the Perchlodiphenylaminyl, an Exceptionally Stable Radical. Tetrahedron Letters, 15, 615-616. https://doi.org/10.1016/s0040-4039(01)82286-3 |
[84] | Berezin, A.A., Constantinides, C.P., Mirallai, S.I., Manoli, M., Cao, L.L., Rawson, J.M., et al. (2013) Synthesis and Properties of Imidazolo-Fused Benzotriazinyl Radicals. Organic & Biomolecular Chemistry, 11, 6780-6795. https://doi.org/10.1039/c3ob41169a |
[85] | Constantinides, C.P., Berezin, A.A., Manoli, M., Leitus, G.M., Zissimou, G.A., Bendikov, M., et al. (2014) Structural, Magnetic, and Computational Correlations of Some Imidazolo‐Fused 1, 2, 4‐Benzotriazinyl Radicals. Chemistry—A European Journal, 20, 5388-5396. https://doi.org/10.1002/chem.201304538 |
[86] | Kaszyński, P., Constantinides, C.P. and Young, V.G. (2016) The Planar Blatter Radical: Structural Chemistry of 1, 4‐Dihydrobenzo[e] [1,2,4]triazin‐4‐yls. Angewandte Chemie International Edition, 55, 11149-11152. https://doi.org/10.1002/anie.201605612 |
[87] | Beldjoudi, Y., Osorio-Román, I., Nascimento, M.A. and Rawson, J.M. (2017) A Fluorescent Dithiadiazolyl Radical: Structure and Optical Properties of Phenanthrenyl Dithiadiazolyl in Solution and Polymer Composites. Journal of Materials Chemistry C, 5, 2794-2799. https://doi.org/10.1039/c6tc05576a |
[88] | Rawson, M., Beldjoudi, Y., et al. (2018) Multi-Functional Dithiadiazolyl Radicals: Fluorescence, Electroluminescence and Photo-Conducting Behavior in Pyren1’-Yl-Dithi-Adiazolyl. Journal of the American Chemical Society, 24, 1-13. |
[89] | Huang, B., Kang, H., Zhang, C., Zhao, X., Shi, X. and Yang, H. (2022) Design of an Open-Shell Nitrogen-Centered Diradicaloid with Tunable Stimuli-Responsive Electronic Properties. Communications Chemistry, 5, Article No. 127. https://doi.org/10.1038/s42004-022-00747-8 |
[90] | Gao, S., Ding, J., Yu, S. and Li, F. (2023) Stable Nitrogen-Centered Radicals with Anti-Kasha Emission. Journal of Materials Chemistry C, 11, 6400-6406. https://doi.org/10.1039/d2tc05471j |
[91] | Montgomery, L.K., Huffman, J.C., Jurczak, E.A. and Grendze, M.P. (1986) The Molecular Structures of Thiele’s and Chichibabin’s Hydrocarbons. Journal of the American Chemical Society, 108, 6004-6011. https://doi.org/10.1021/ja00279a056 |
[92] | Shimizu, A., Kubo, T., Uruichi, M., Yakushi, K., Nakano, M., Shiomi, D., et al. (2010) Alternating Covalent Bonding Interactions in a One-Dimensional Chain of a Phenalenyl-Based Singlet Biradical Molecule Having Kekulé Structures. Journal of the American Chemical Society, 132, 14421-14428. https://doi.org/10.1021/ja1037287 |
[93] | Sun, Z. and Wu, J. (2012) Open-Shell Polycyclic Aromatic Hydrocarbons. Journal of Materials Chemistry, 22, 4151-4160. https://doi.org/10.1039/c1jm14786b |
[94] | Nobusue, S., Miyoshi, H., Shimizu, A., Hisaki, I., Fukuda, K., Nakano, M., et al. (2015) Tetracyclopenta[def, jkl, pqr, vwx]Tetraphenylene: A Potential Tetraradicaloid Hydrocarbon. Angewandte Chemie International Edition, 54, 2090-2094. https://doi.org/10.1002/anie.201410791 |
[95] | Li, Y., Heng, W., Lee, B.S., Aratani, N., Zafra, J.L., Bao, N., et al. (2012) Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State? Journal of the American Chemical Society, 134, 14913-14922. https://doi.org/10.1021/ja304618v |
[96] | Sun, Z., Lee, S., Park, K.H., Zhu, X., Zhang, W., Zheng, B., et al. (2013) Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar’s Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 135, 18229-18236. https://doi.org/10.1021/ja410279j |
[97] | Zeng, Z., Ishida, M., Zafra, J.L., Zhu, X., Sung, Y.M., Bao, N., et al. (2013) Pushing Extended p-Quinodimethanes to the Limit: Stable Tetracyano-Oligo(n-Annulated Perylene)Quinodimethanes with Tunable Ground States. Journal of the American Chemical Society, 135, 6363-6371. https://doi.org/10.1021/ja402467y |
[98] | Das, S., Herng, T.S., Zafra, J.L., Burrezo, P.M., Kitano, M., Ishida, M., et al. (2016) Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-Radical Characters. Journal of the American Chemical Society, 138, 7782-7790. https://doi.org/10.1021/jacs.6b04539 |
[99] | Yuan, N., Wang, W., Wu, Z., Chen, S., Tan, G., Sui, Y., et al. (2016) A Boron-Centered Radical: A Potassium-Crown Ether Stabilized Boryl Radical Anion. Chemical Communications, 52, 12714-12716. https://doi.org/10.1039/c6cc06918e |
[100] | Lednor, W., Lappert, F., et al. (1974) Photochemical Synthesis and Electron Spin Resonance Characterisation of Stable Trivalent Metal Alkyls (Si, Ge, Sn) and Amides (Ge and Sn) of Group IV Elements. Journal of the Chemical Society, Chemical Communications, No. 16, 651-652. |
[101] | Lednor, W., Lappert, F., et al. (1976) Subvalent Group 4B Metal Alkyls and Amides. Part 4.’ An Electron Spin Resonance Study of Some Long-Lived Photochemically Synthesised Trisubstituted Silyl, Germyl, and Stannyl Radicals. Journal of the Chemical Society, Dalton Transactions, No. 22, 2369-2375. |
[102] | Sekiguchi, A., Matsuno, T. and Ichinohe, M. (2001) Cyclotetrasilenyl: The First Isolable Silyl Radical. Journal of the American Chemical Society, 123, 12436-12437. https://doi.org/10.1021/ja011617z |
[103] | Holzner, R., Kaushansky, A., Tumanskii, B., Frisch, P., Linsenmann, F. and Inoue, S. (2019) Isolation of a Relatively Air‐Stable, Bulky Silyl‐Substituted, Neutral Silicon‐Centered Radical. European Journal of Inorganic Chemistry, 2019, 2977-2981. https://doi.org/10.1002/ejic.201900522 |