|
Pure Mathematics 2025
刚性立管顺流向与横向涡激振动的数值模拟分析
|
Abstract:
涡激振动是深海立管在复杂海洋环境中常见的动力响应之一,常导致立管结构疲劳损坏。本研究针对刚性立管的涡激振动问题展开分析,重点讨论顺流向与横向振动特性。在数值模拟过程中,构建耦合常微分方程组来描述结构与尾流振子之间的相互作用,并采用四阶龙格–库塔法和有限差分法对其进行求解。模拟结果显示,两种数值方法所得结果高度一致,验证了所用方法的准确性与有效性。进一步地,基于该方法研究了一系列质量比与结构阻尼比条件下,位移振幅随折合速度的变化规律。
Vortex-induced vibration (VIV) is one of the common dynamic responses of deep-sea risers in complex ocean environments, often leading to fatigue damage of the riser structure. This study analyzes the VIV of rigid risers, with a focus on the in-line and cross-flow vibration characteristics. In the numerical simulation process, a coupled system of ordinary differential equations is constructed to describe the interaction between the structure and the wake oscillator. The fourth-order Runge-Kutta method and the finite difference method are employed to solve the system. The simulation results show a high degree of consistency between the two numerical methods, verifying the accuracy and effectiveness of the proposed approach. Furthermore, based on this method, the variation of displacement amplitude with reduced velocity is investigated under a series of mass ratio and structural damping ratio conditions.
[1] | 唐国强. 立管涡激振动数值模拟方法及物理模型实验[D]: [博士学位论文]. 大连: 大连理工大学, 2011. |
[2] | Xu, W., Zhang, S., Zhou, L. and Gao, X. (2018) Use of Helical Strakes for FIV Suppression of Two Inclined Flexible Cylinders in a Side-by-Side Arrangement. China Ocean Engineering, 32, 331-340. https://doi.org/10.1007/s13344-018-0034-9 |
[3] | Amini, Y. and Zahed, I. (2021) Flow-Induced Vibration of Two Tandemly Arranged Circular Cylinders with Attached Splitter Plates. Ocean Engineering, 237, Article ID: 109604. https://doi.org/10.1016/j.oceaneng.2021.109604 |
[4] | Guo, X., Stoesser, T., Nian, T., Jia, Y. and Liu, X. (2022) Effect of Pipeline Surface Roughness on Peak Impact Forces Caused by Hydrodynamic Submarine Mudflow. Ocean Engineering, 243, Article ID: 110184. https://doi.org/10.1016/j.oceaneng.2021.110184 |
[5] | Stappenbelt, B., Lalji, F. and Tan, G. (2007) Low Mass Ratio Vortex-Induced Motion. 16th Australasian Fluid Mechanics Conference, Crown Plaza, 3-7 December 2007, 1491-1497. |
[6] | Trim, A.D., Braaten, H., Lie, H. and Tognarelli, M.A. (2005) Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers. Journal of Fluids and Structures, 21, 335-361. https://doi.org/10.1016/j.jfluidstructs.2005.07.014 |
[7] | 康庄, 贾鲁生. 圆柱体双自由度涡激振动轨迹的模型试验[J]. 力学学报, 2012, 44(6): 970-980. |
[8] | 周阳, 黄维平, 杨斌, 等. 带螺旋侧板立管两向涡激振动的试验研究[J]. 振动与冲击, 2018, 37(17): 249-255. |
[9] | 秦伟. 双自由度涡激振动的涡强尾流振子模型研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2013. |
[10] | Srinil, N. and Zanganeh, H. (2012) Modelling of Coupled Cross-Flow/in-Line Vortex-Induced Vibrations Using Double Duffing and Van Der Pol Oscillators. Ocean Engineering, 53, 83-97. https://doi.org/10.1016/j.oceaneng.2012.06.025 |
[11] | Prethiv Kumar, R. and Nallayarasu, S. (2022) Numerical Investigation of VIV Responses of the Flexible Riser System Modelled as Tensioned Cable Subjected to Shear Flow. Ocean Engineering, 265, Article ID: 112659. https://doi.org/10.1016/j.oceaneng.2022.112659 |
[12] | Karthikeyan, S. and Nallayarasu, S. (2023) CFD Simulation of Vortex-Induced Vibration of an Elastic Cylinder in Subcritical Flow Regime Using a Two-Way Coupled Model Validated by Experiment. Ocean Engineering, 273, Article ID: 113956. https://doi.org/10.1016/j.oceaneng.2023.113956 |
[13] | Chen, D., Xu, R., Lin, Y., Gao, N., Pan, G. and Pier, M. (2023) Nonlinear Energy Sink-Based Study on Vortex-Induced Vibration and Control of Foil-Cylinder Coupled Structure. Ocean Engineering, 286, Article ID: 115623. https://doi.org/10.1016/j.oceaneng.2023.115623 |
[14] | 骆正山, 蔡梦倩. 深海立管VIV预测模型及影响因素研究[J]. 中国安全科学学报, 2019, 29(7): 6-11. |
[15] | 朱磊. 海洋立管二维非线性涡激振动理论研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2022. |
[16] | 赵桂欣, 孟帅, 车驰东, 等. 深海立管顺流与横流耦合涡激振动中的内流效应分析[J]. 振动与冲击, 2023, 42(19): 7-13. |
[17] | 唐友刚, 青兆熹, 张杰, 等. 深海立管涡激振动预报模型及影响因素[J]. 哈尔滨工程大学学报, 2017, 38(3): 338-343. |
[18] | Gao, Y., Zhang, Z., Pan, G., Peng, G., Liu, L. and Wang, W. (2021) Three-Dimensional Vortex-Induced Vibrations of a Circular Cylinder Predicted Using a Wake Oscillator Model. Marine Structures, 80, Article ID: 103078. https://doi.org/10.1016/j.marstruc.2021.103078 |
[19] | 马宁, 刘耀斌, 贾光燕, 等. 刚性立管涡激振动的数值模拟方法研究[J]. 应用数学进展, 2024, 13(4): 1345-1353. |
[20] | 高云, 张壮壮, 杨斌, 等. 圆柱体横流与顺流方向涡激振动耦合模型研究[J]. 振动与冲击, 2020, 39(11): 22-30. |
[21] | Nayfeh, A.H. (2024) Introduction to Perturbation Techniques. John Wiley & Sons. |