|
Modern Linguistics 2025
大语言模型下科技文本译文质量比较研究——以四种典型文本为例
|
Abstract:
本文主要以ChatGPT和文心一言两个大语言模型为主要研究对象,着眼于大语言模型和传统机器翻译软件在四个不同类型的科技文本中的翻译对比,选取具有代表性的文本作为典型案例,将大语言模型翻译、传统机器翻译软件以及人工翻译三者进行对比,对译文的准确性和通顺程度进行评价。发现大语言模型在各方面展现出更高的准确性和流畅性,传统机器翻译尽管在速度和可获取性上具有优势,但其翻译结果往往存在流畅性不足和细节处理欠佳的问题。大语言模型在语言处理能力上虽有进步,但在精确性、用词的准确性、情感处理以及语境的把握上无法超越人工翻译,未来还有很大的发展潜能。
This paper takes two large language models, ChatGPT and Wenxin Yiyan, as the main research objects and focuses on the comparison between large language models and traditional machine translation software in the translation across four distinct types of scientific and technological texts. Representative texts are selected as typical cases, and translations from large language models, traditional machine translation software, and human translators are compared to evaluate accuracy and fluency. It is found that large language models demonstrate higher levels of accuracy and fluency overall. While traditional machine translation offers advantages in speed and accessibility, its results often exhibit shortcomings in fluency and detail handling. Although large language models show progress in language processing capabilities, they still fall short of human translation in aspects such as precision, word choice, emotional tone, and contextual understanding, indicating significant potential for future improvement.
[1] | 李佐文, 龙飞. 语言模型的范式演进与计算语言学的未来[J]. 语言政策与规划研究, 2024(1): 86-96+203. |
[2] | 闫啸彤, 唐晓彬, 沈童, 等. 大语言模型发展综述[J]. 统计学报, 2024, 5(4): 13-18. |
[3] | 赵衍, 张慧, 杨祎辰. 大语言模型在文本翻译中的质量比较研究——以《繁花》翻译为例[J]. 外语电化教学, 2024(4): 60-66. |
[4] | 朱丹浩, 黄肖宇, 李堯霖, 等. 基于大语言模型的法律文本的自动摘要方法[J/OL]. 数据分析与知识发现: 1-23. http://kns.cnki.net/kcms/detail/10.1478.G2.20241013.1125.002.html, 2024-10-20. |
[5] | 张子威, 武志学, 张薇. 大语言模型在医疗应急知识图谱问答服务中的智能化实践探索[J/OL]. 软件导刊: 1-7. http://kns.cnki.net/kcms/detail/42.1671.TP.20241014.1135.042.html, 2024-10-20. |
[6] | 吴永和, 姜元昊, 陈圆圆, 等. 大语言模型支持的多智能体: 技术路径、教育应用与未来展望[J]. 开放教育研究, 2024, 30(5): 63-75. |
[7] | 胡梦晨, 尹东亮. 大语言模型在企业财务会计领域中的应用[J]. 中国市场, 2024(29): 179-182. |
[8] | 汪楚翔, 赵正阳, 张梓鸿, 等. 城轨基础设施运维领域大语言模型构建研究[C]//中国国际科技促进会智慧城市轨道交通专业委员会. 第八届智慧城市与轨道交通国际学术会议暨新质生产力赋能轨道交通行业高质量发展论坛论文集. 2024: 311-314. |
[9] | Hendy, A., Abdelrehim, M., Sharaf, A., Raunak, V., et al. (2024) How Good Are GPT Models at Machine Translation? A Comprehensive Evaluation. arXiv: 2302.09210. https://arxiv.org/abs/2302.09210 |
[10] | 耿芳, 胡健. 人工智能辅助译后编辑新方向——基于ChatGPT的翻译实例研究[J]. 中国外语, 2023, 20(3): 41-47. |
[11] | Gao, Y., Wang, R.L. and Hou, F. (2024) How to Design Translation Prompts for ChatGPT: An Empirical Study. arXiv: 2304.02182. https://arxiv.org/abs/2304.02182 |
[12] | Zhang, B., Haddow, B. and Birchk A. (2023) Prompting Large Language Model for Machine Translation: A Case Study. Proceedings of the 40th International Conference on Machine Learning, Honolulu, 23-29 July 2023, 41092-41110. |
[13] | Xu, H.R., Kim, Y.J., Sharaf, A. and Awadalla, H.H. (2023) A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models. arXiv: 2309.11674. https://arxiv.org/abs/2309.11674 |
[14] | 胡开宝, 李晓倩. 大语言模型背景下翻译研究的发展: 问题与前景[J]. 中国翻译, 2023, 44(6): 64-73+192. |
[15] | 王贇, 张政. ChatGPT人工智能翻译的隐忧与纾解[J]. 中国翻译, 2024, 45(2): 95-102. |
[16] | 许家金, 赵冲. 大语言模型在英语教学中的角色[J]. 外语教育研究前沿, 2024, 7(1): 3-10+90. |
[17] | 傅勇林, 唐跃勤. 科技翻译[M]. 北京: 外语教学与研究出版社, 2012. |
[18] | 陈亮, 兰杰. 招投标英语的特点及翻译探析[J]. 新疆广播电视大学学报, 2015, 19(4): 60-62. |
[19] | 李艳辉. 科技英语产品使用说明书的语言特点与翻译[J]. 青年文学家, 2015(30): 142-143. |
[20] | 张玉洁. 英汉专利翻译技巧浅析[J]. 新丝路(下旬), 2016(3): 121+120. |