|
基于P + R出行信息的电动汽车用户换乘行为影响因素研究
|
Abstract:
现有研究多侧重于对整体小汽车用户群体的停车换乘(Park and Ride, P + R)选择行为分析,缺乏对电动汽车用户群体的专门探讨。考虑到电动汽车用户在充电需求等方面的特殊性,深入研究该用户群体的P + R选择行为对优化城市交通管理具有重要意义。研究在手机出行APP整合P + R出行信息的基础上,通过意向调查法收集了近一千条有关电动汽车用户的P + R选择意向、个体属性等数据,并运用混合选择模型进行量化分析。结果显示,使用过P + R、自驾延误时间增加、P + R停车费用降低、P + R停车场到地铁站的步行时间缩短以及存在充电桩空位时,电动汽车用户选择P + R的意愿显著提升。基于此,提出P + R停车场增加充电桩数量、优化停车场布局、缩短步行时间、实施电动汽车用户停车费用减免等政策,以促进P + R设施在电动汽车用户中的普及和利用。
Most existing literature has largely focused on analyzing the Park and Ride (P + R) choice behavior of all car user group. However, there is a lack of specific exploration of the electric vehicle (EV) user group. Considering the particularity of EV users in terms of charging needs and other aspects, in-depth research on the P + R choice behavior of this user group is of great significance for optimizing urban traffic management. Based on the integration of P + R travel information in the mobile travel APP, this study collected nearly a thousand pieces of data on the P + R choice intentions and individual attributes of EV users through the intention surveys. And it used the hybrid choice model for quantitative analysis. The results indicate that when EV users have used P + R, when the delay time of self-driving increases, when the P + R parking fee decreases, when the walking time from the P + R parking lot to the subway station shortens, and when there are empty charging piles, the willingness of EV users to choose P + R significantly increases. Based on this, policies such as increasing the number of charging piles in P + R parking lots, optimizing the parking lot layout, shortening the walking time, and implementing parking fee exemptions for EV users are proposed. These policies aim to promote the popularization and utilization of P + R facilities among EV users.
[1] | 中华人民共和国中央人民政府. 国务院办公厅转发国家发展改革委等部门关于推动城市停车设施发展意见的通知[EB/OL]. 2021-05-07. https://www.gov.cn/gongbao/content/2021/content_5616155.htm, 2025-03-13. |
[2] | 中华人民共和国中央人民政府. 国务院关于印发“十四五”现代综合交通运输体系发展规划的通知[EB/OL]. 2022-01-18. https://www.gov.cn/zhengce/content/2022-01/18/content_5669049.htm, 2025-03-13. |
[3] | Macioszek, E. and Kurek, A. (2020) The Use of a Park and Ride System—A Case Study Based on the City of Cracow (Poland). Energies, 13, Article 3473. https://doi.org/10.3390/en13133473 |
[4] | 陈佩虹, 史明鑫. 北京市停车换乘行为影响因素分析[J]. 北京交通大学(社会科学版), 2019, 18(1): 38-47. |
[5] | Mei, Z., Wei, D., Ding, W., Wang, D. and Ma, D. (2023) Multi-Agent Simulation for Multi-Mode Travel Policy to Improve Park and Ride Efficiency. Computers & Industrial Engineering, 185, Article ID: 109660. https://doi.org/10.1016/j.cie.2023.109660 |
[6] | 尉建南. 面向北京郊区通勤出行的P&R行为分析与建模[D]: [硕士学位论文]. 北京: 北京交通大学, 2020. |
[7] | 关宏志, 刘瑞远, 曾敏耀. 考虑停车换乘停车位不足的停车换乘行为[J]. 北京工业学学报, 2019, 45(6): 593-600. |
[8] | 曹一迪. 基于P&R选择行为影响因素的停车诱导研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2023. |
[9] | 朱震军, 徐逸清, 施非凡, 等. 基于CNL的轨道站点停车换乘选择行为分析[J]. 交通信息与安全, 2024, 42(1): 161-167. |
[10] | 卢俊沛. 考虑用户时间和舒适度差异的P + R停车设施最优定价[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2023. |
[11] | Khoo, H.L. and Asitha, K.S. (2016) User Requirements and Route Choice Response to Smart Phone Traffic Applications (apps). Travel Behaviour and Society, 3, 59-70. https://doi.org/10.1016/j.tbs.2015.08.004 |
[12] | 王馨玉, 干宏程, 朱妍, 等. 多模式出行信息对小汽车出行者转向P + R的影响[J]. 交通运输研究, 2024, 10(3): 75-82. |
[13] | 范文博, 蒋葛夫. 信息作用下随机多方式网络停车换乘行为[J]. 西南交通大学学报, 2008, 43(4): 524-530. |
[14] | Huang, Y., Gan, H., Jing, P. and Wang, X. (2022) Analysis of Park and Ride Mode Choice Behavior under Multimodal Travel Information Service. Transportation Letters, 14, 1080-1090. https://doi.org/10.1080/19427867.2021.1988438 |
[15] | Fornell, C. and Larcker, D.F. (1981) Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18, 39-50. https://doi.org/10.1177/002224378101800104 |
[16] | Vij, A. and Walker, J.L. (2016) How, When and Why Integrated Choice and Latent Variable Models Are Latently Useful. Transportation Research Part B: Methodological, 90, 192-217. https://doi.org/10.1016/j.trb.2016.04.021 |