|
基于时间序列分析的网络谣言传播数据研究
|
Abstract:
网络谣言是没有事实依据,且通过网络介质传播带有攻击性、目的性的不实信息。突发性强、流传速度极快,且内容往往耸人听闻,容易引发公众恐慌和不安。研究网络谣言的传播机制,有助于及时揭露谣言,为公众提供准确信息,避免其受到错误信息的误导,从而保护公众的知情权和判断力。本文介绍了谣言传播机制,使用SIR和LSTM时间序列模型研究网络谣言在不同时间的传播状态及趋势,分析网络谣言的传播规律,识别关键传播节点。本文基于真实案例“房屋养老金”谣言,使用两个模型研究谣言传播机制,这对于制定有效的谣言控制策略具有重要意义。
Internet rumors are unfounded pieces of information that are disseminated through online media, characterized by their aggressive and purposeful nature. They often emerge abruptly, spread rapidly, and contain sensational content that can easily incite public panic and unease. Investigating the propagation mechanisms of internet rumors is crucial for promptly debunking these falsehoods, providing the public with accurate information, preventing the public from being misled by misinformation, and thereby safeguarding the public’s right to know and their ability to make informed judgments. This article introduces the mechanisms of rumor propagation, employing the SIR and LSTM time series models to study the state and trends of internet rumor dissemination over time, analyze the patterns of rumor spread, and identify key nodes in the propagation network. This paper is based on the real case of the “House Pension” rumor, utilizing two models to investigate the mechanisms of rumor propagation, which holds significant importance for formulating effective strategies to control rumors.
[1] | 翟月荧. 网络谣言的传播与治理[J]. 东岳论丛, 2023, 44(8): 150-156. |
[2] | 冯雯璐, 刘乃榕, 田晓丽. 网络舆情事件中的谣言传播与智能化治理[J]. 媒体融合新观察, 2024(6): 63-71. |
[3] | 刘立伟, 谢晓娟. 新媒体时代网络舆情的新态势及其治理[J]. 学校党建与思想教育, 2024(23): 71-74. |
[4] | 高卫国, 蔡永丽. 网络谣言传播的动力学建模及其平衡点稳定性分析[J]. 扬州大学学报(自然科学版), 2022, 25(5): 7-11+53. |
[5] | Daley, D.J. and Kendall, D.G. (1965) Stochastic Rumours. Journal of Applied Mathematics, 1, 42-55. https://doi.org/10.1093/imamat/1.1.42 |
[6] | 李佳洋, 宋博伟, 王丹. 基于SIR的网络谣言演化模型与控制策略[J]. 沈阳大学学报(自然科学版), 2021, 33(2): 140-149. |
[7] | 王菽裕, 宋俊芳, 张春玉. 考虑双因素辟谣机制的谣言传播模型及其仿真研究[J]. 网络安全技术与应用, 2023(11): 48-51. |
[8] | 张明菊, 仇丽青. 社交网络中考虑怀疑机制的谣言传播模型[J]. 软件导刊, 2021, 20(4): 123-128. |
[9] | Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 |
[10] | 吴昊, 曹宇, 魏海平, 等. 基于自注意力机制LSTM的COVID-19感染预测[J]. 计算机应用与软件, 2024, 41(9): 106-113. |
[11] | 何杰, 李素平, 何盈盈, 等. 基于ARIMA及LSTM模型的股票分析[J]. 现代信息科技, 2024, 8(21): 41-45. |
[12] | 丁文绢. 基于股票预测的ARIMA模型、LSTM模型比较[J]. 工业控制计算机, 2021, 34(7): 109-112, 116. |