全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稻壳吸附孔雀石绿染料废水的研究
Study on the Adsorption of Malachite Green Dye Wastewater by Rice Husk

DOI: 10.12677/amc.2025.132024, PP. 214-224

Keywords: 稻壳,孔雀石绿,吸附
Rice Husk
, Malachite Green, Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

论文选用稻壳作吸附材料处理孔雀石绿模拟废水。借助SEM、BET和FTIR等手段对稻壳结构、形貌和特性进行表征,采用静态吸附实验探究了吸附时间、吸附剂投加量、孔雀石绿初始浓度和温度等因素对吸附效果的影响,并用动力学模型和吸附等温模型进行拟合分析。SEM可以明显观察稻壳呈现纤维状或蜂窝状多孔结构,BET结果表明稻壳的比表面积为0.8064 m2/g。孔雀石绿在稻壳上的吸附符合Langmuir模型,说明孔雀石绿在稻壳的吸附为单分子层吸附。动力学拟合结果证明稻壳对孔雀石绿的吸附符合准二级动力学模型,以化学吸附为主导。
The paper uses rice husk as an adsorbent material to treat simulated wastewater containing malachite green. The structure, morphology, and characteristics of rice husks were characterized using SEM, BET, and FTIR techniques. Static adsorption experiments were conducted to investigate the effects of adsorption time, adsorbent dosage, initial concentration of malachite green, and temperature on the adsorption efficiency. Dynamic and adsorption isotherm models were fitted and analyzed. SEM can clearly observe the fibrous or honeycomb like porous structure of rice husks, and BET results show that the specific surface area of rice husks is 0.8064 m2/g. The adsorption of malachite green on rice husks conforms to the Langmuir model, indicating that the adsorption of malachite green on rice husks is a monolayer adsorption. The dynamic fitting results demonstrate that the adsorption of peacock green by rice husks follows a quasi second order kinetic model, with chemical adsorption as the dominant mechanism.

References

[1]  Montalvo-Andía, J., Reátegui-Romero, W., Peña-Contreras, A.D., Zaldivar Alvarez, W.F., King-Santos, M.E., Fernández-Guzmán, V., et al. (2022) Adsorption of Cd (II) Using Chemically Modified Rice Husk: Characterization, Equilibrium, and Kinetic Studies. Adsorption Science & Technology, 2022, Article ID: 3688155.
https://doi.org/10.1155/2022/3688155

[2]  Chakraborty, S., Chowdhury, S. and Das Saha, P. (2011) Adsorption of Crystal Violet from Aqueous Solution onto Naoh-Modified Rice Husk. Carbohydrate Polymers, 86, 1533-1541.
https://doi.org/10.1016/j.carbpol.2011.06.058

[3]  Peng, D., Ouyang, F., Liang, X., Guo, X., Dang, Z. and Zheng, L. (2018) Sorption of Crude Oil by Enzyme-Modified Corn Stalk vs. Chemically Treated Corn Stalk. Journal of Molecular Liquids, 255, 324-332.
https://doi.org/10.1016/j.molliq.2018.01.178

[4]  Gao, R., Xiang, L., Hu, H., Fu, Q., Zhu, J., Liu, Y., et al. (2020) High-efficiency Removal Capacities and Quantitative Sorption Mechanisms of Pb by Oxidized Rape Straw Biochars. Science of the Total Environment, 699, Article ID: 134262.
https://doi.org/10.1016/j.scitotenv.2019.134262

[5]  Rehman, M.A., Yusoff, I., Ahmmad, R. and Alias, Y. (2015) Arsenic Adsorption Using Palm Oil Waste Clinker Sand Biotechnology: An Experimental and Optimization Approach. Water, Air, & Soil Pollution, 226, Article No. 149.
https://doi.org/10.1007/s11270-015-2411-9

[6]  Kushwaha, R., Singh, R.S. and Mohan, D. (2023) Comparative Study for Sorption of Arsenic on Peanut Shell Biochar and Modified Peanut Shell Biochar. Bioresource Technology, 375, Article ID: 128831.
https://doi.org/10.1016/j.biortech.2023.128831

[7]  Hu, Z., Su, G., Long, S., Zhang, X., Zhang, L., Chen, Y., et al. (2024) Synthesis of X@DRHC (X = Co, Ni, Mn) Catalyst from Comprehensive Utilization of Waste Rice Husk and Spent Lithium-Ion Batteries for Efficient Peroxymonosulfate (PMS) Activation. Environmental Research, 245, Article ID: 118078.
https://doi.org/10.1016/j.envres.2023.118078

[8]  Li, A., Xie, H., Qiu, Y., Liu, L., Lu, T., Wang, W., et al. (2022) Resource Utilization of Rice Husk Biomass: Preparation of MgO Flake-Modified Biochar for Simultaneous Removal of Heavy Metals from Aqueous Solution and Polluted Soil. Environmental Pollution, 310, Article ID: 119869.
https://doi.org/10.1016/j.envpol.2022.119869

[9]  Das, S.K., Manchanda, P. and Peinemann, K. (2019) Solvent-resistant Triazine-Piperazine Linked Porous Covalent Organic Polymer Thin-Film Nanofiltration Membrane. Separation and Purification Technology, 213, 348-358.
https://doi.org/10.1016/j.seppur.2018.12.046

[10]  Kumar, B. and Kumar, U. (2015) Adsorption of Malachite Green in Aqueous Solution onto Sodium Carbonate Treated Rice Husk. Korean Journal of Chemical Engineering, 32, 1655-1666.
https://doi.org/10.1007/s11814-014-0351-5

[11]  Achary, P.G.R., Pattanaik, P. and Nanda, B. (2023) Facile Synthesis of Lanthanum Doped Strontium Manganite for Photocatalytic Decolourization of Malachite Green. Inorganic Chemistry Communications, 158, Article ID: 111545.
https://doi.org/10.1016/j.inoche.2023.111545

[12]  Tewari, K., Singhal, G. and Arya, R.K. (2017) Adsorption Removal of Malachite Green Dye from Aqueous Solution. Reviews in Chemical Engineering, 34, 427-453.
https://doi.org/10.1515/revce-2016-0041

[13]  Le Curieux, F., Gohlke, J.M., Pronk, A., Andersen, W.C., Chen, G., Fang, J., et al. (2021) Carcinogenicity of Gentian Violet, Leucogentian Violet, Malachite Green, Leucomalachite Green, and CI Direct Blue 218. The Lancet Oncology, 22, 585-586.
https://doi.org/10.1016/s1470-2045(21)00178-9

[14]  Xia, Y., Yuan, H., Qiao, C., Li, W., Wang, R., Chen, P., et al. (2024) Multifunctional Eu3+-MOF for Simultaneous Quantification of Malachite Green and Leuco-Malachite Green and Efficient Adsorption of Malachite Green. Journal of Hazardous Materials, 465, Article ID: 133386.
https://doi.org/10.1016/j.jhazmat.2023.133386

[15]  Sharma, J., Sharma, S. and Soni, V. (2023) Toxicity of Malachite Green on Plants and Its Phytoremediation: A Review. Regional Studies in Marine Science, 62, Article ID: 102911.
https://doi.org/10.1016/j.rsma.2023.102911

[16]  Su, D., Huang, J., Li, Y., Chen, L. and Wang, Y. (2024) Removing Efficiency and Mechanism of Ciprofloxacin from Aqueous Solution Using Rectorite. Water, Air, & Soil Pollution, 235, Article No. 271.
https://doi.org/10.1007/s11270-024-07070-z

[17]  Vyavahare, G., Patil, R., Gurav, R., Shorobi, F.M., Kadam, S., Jadhav, J., et al. (2024) Investigating the Efficacy of Biochar Produced from Agro-Waste for Basic Fuchsin Dye Removal: Kinetics, Isotherm, and Thermodynamic Studies. Journal of the Indian Chemical Society, 101, Article ID: 101278.
https://doi.org/10.1016/j.jics.2024.101278

[18]  Shen, Y. and Fu, Y. (2018) Koh-Activated Rice Husk Char via CO2 Pyrolysis for Phenol Adsorption. Materials Today Energy, 9, 397-405.
https://doi.org/10.1016/j.mtener.2018.07.005

[19]  闫改萌. 稻壳基多孔材料的制备及其应用研究[D]: [硕士学位论文]. 郑州: 河南工业大学, 2023.
[20]  Shen, Y., Yu, X. and Wang, Y. (2019) Facile Synthesis of Modified Rectorite (M-REC) for Effective Removal of Anionic Dye from Water. Journal of Molecular Liquids, 278, 12-18.
https://doi.org/10.1016/j.molliq.2019.01.045

[21]  Li, M., Wang, Y., Liu, Y., Wang, H. and Song, H. (2022) Preparation of Active Carbon through One-Step NaOH Activation of Coconut Shell Biomass for Phenolic Wastewater Treatment. Research on Chemical Intermediates, 48, 1665-1684.
https://doi.org/10.1007/s11164-021-04650-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133