|
多年冻土区森林土壤可溶解性有机碳研究进展及影响因素
|
Abstract:
多年冻土区是典型的生态环境脆弱区和全球重要的土壤碳库。气候变暖引发的多年冻土融化加剧了土壤中可溶解性有机碳(DOC)的释放与迁移,对全球碳循环产生了显著影响,进而可能加剧全球气候变化。近年来,相关研究集中探讨了多年冻土泥炭地可溶性有机碳的季节变化特征,包括浓度变化、化学组成以及迁移特性,揭示了温度、土壤水分状况、植被变化、泥炭地排水及微生物活动等多种因素对可溶性有机碳的显著影响。随着全球气候变暖加剧,多年冻土的退化进一步加速了土壤活动层内微生物群落组成的改变,推动了碳的矿化过程,增加了向大气释放的潜在风险。当前广泛应用的紫外可见光谱与高分辨率质谱技术虽可揭示DOC的芳香性及腐殖质等特征,但仍然缺乏分子层面的深入解析。此外,针对中高纬度多年冻土泥炭地的研究仍然较为匮乏。因此,未来需进一步深入研究多年冻土泥炭地DOC特征的季节变化机制及其环境影响因素。
Permafrost regions are ecologically fragile zones and important global soil carbon reservoirs. The thawing of permafrost induced by climate warming accelerates the release and migration of dissolved organic carbon (DOC), significantly impacting global carbon cycling and exacerbating climate change. Recent research has extensively examined the seasonal variations of DOC concentration, composition, and sources within forest soils in permafrost regions. Studies indicate substantial DOC variability influenced by factors such as temperature fluctuations, soil moisture, vegetation dynamics, microbial activities, and hydrological conditions. DOC in these regions demonstrates notable seasonal variation, influenced by factors including thaw depth, vegetation type, drainage patterns, and microbial activities. Techniques such as ultraviolet-visible spectroscopy and high-resolution mass spectrometry have been applied to evaluate DOC’s chemical characteristics, particularly its aromaticity and humic components. However, these approaches have limitations in revealing molecular-level information, especially within mid-to-high latitude permafrost peatlands, where related studies remain scarce. Future investigations should focus on elucidating the underlying mechanisms of DOC seasonal variability and exploring environmental factors influencing DOC dynamics in diverse permafrost ecosystems.
[1] | Liljedahl, A.K., Boike, J., Daanen, R.P., Fedorov, A.N., Frost, G.V., Grosse, G., et al. (2016) Pan-Arctic Ice-Wedge Degradation in Warming Permafrost and Its Influence on Tundra Hydrology. Nature Geoscience, 9, 312-318. https://doi.org/10.1038/ngeo2674 |
[2] | Kokelj, S.V., Lantz, T.C., Tunnicliffe, J., Segal, R. and Lacelle, D. (2017) Climate-Driven Thaw of Permafrost Preserved Glacial Landscapes, Northwestern Canada. Geology, 45, 371-374. https://doi.org/10.1130/g38626.1 |
[3] | Fraser, R.H., Kokelj, S.V., Lantz, T.C., McFarlane-Winchester, M., Olthof, I. and Lacelle, D. (2018) Climate Sensitivity of High Arctic Permafrost Terrain Demonstrated by Widespread Ice-Wedge Thermokarst on Banks Island. Remote Sensing, 10, Article 954. https://doi.org/10.3390/rs10060954 |
[4] | Biskaborn, B.K., Smith, S.L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D.A., et al. (2019) Permafrost Is Warming at a Global Scale. Nature Communications, 10, Article No. 264. https://doi.org/10.1038/s41467-018-08240-4 |
[5] | Magnússon, R.Í., Hamm, A., Karsanaev, S.V., Limpens, J., Kleijn, D., Frampton, A., et al. (2022) Extremely Wet Summer Events Enhance Permafrost Thaw for Multiple Years in Siberian Tundra. Nature Communications, 13, Article No. 1556. https://doi.org/10.1038/s41467-022-29248-x |
[6] | Zhong, S., Li, B., Hou, B., Xu, X., Hu, J., Jia, R., et al. (2023) Structure, Stability, and Potential Function of Groundwater Microbial Community Responses to Permafrost Degradation on Varying Permafrost of the Qinghai-Tibet Plateau. Science of the Total Environment, 875, Article 162693. https://doi.org/10.1016/j.scitotenv.2023.162693 |
[7] | Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K.G., Hutchings, J.A., et al. (2019) Direct Observation of Permafrost Degradation and Rapid Soil Carbon Loss in Tundra. Nature Geoscience, 12, 627-631. https://doi.org/10.1038/s41561-019-0387-6 |
[8] | Chen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C., et al. (2021) Large-Scale Evidence for Microbial Response and Associated Carbon Release after Permafrost Thaw. Global Change Biology, 27, 3218-3229. https://doi.org/10.1111/gcb.15487 |
[9] | Wu, M., Chen, S., Chen, J., Xue, K., Chen, S., Wang, X., et al. (2021) Reduced Microbial Stability in the Active Layer Is Associated with Carbon Loss under Alpine Permafrost Degradation. Proceedings of the National Academy of Sciences, 118, e2025321118. https://doi.org/10.1073/pnas.2025321118 |
[10] | Gao, Z., Niu, F., Wang, Y., Lin, Z. and Wang, W. (2021) Suprapermafrost Groundwater Flow and Exchange around a Thermokarst Lake on the Qinghai-Tibet Plateau, China. Journal of Hydrology, 593, Article 125882. https://doi.org/10.1016/j.jhydrol.2020.125882 |
[11] | Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., et al. (2015) Climate Change and the Permafrost Carbon Feedback. Nature, 520, 171-179. https://doi.org/10.1038/nature14338 |
[12] | Abbott, B.W., Jones, J.B., Godsey, S.E., Larouche, J.R. and Bowden, W.B. (2015) Patterns and Persistence of Hydrologic Carbon and Nutrient Export from Collapsing Upland Permafrost. Biogeosciences, 12, 3725-3740. https://doi.org/10.5194/bg-12-3725-2015 |
[13] | Drake, T.W., Wickland, K.P., Spencer, R.G.M., McKnight, D.M. and Striegl, R.G. (2015) Ancient Low-Molecular-Weight Organic Acids in Permafrost Fuel Rapid Carbon Dioxide Production Upon Thaw. Proceedings of the National Academy of Sciences, 112, 13946-13951. https://doi.org/10.1073/pnas.1511705112 |
[14] | Anthony, K.M.W., Zimov, S.A., Grosse, G., Jones, M.C., Anthony, P.M., et al. (2014) A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature, 511, 452-456. https://doi.org/10.1038/nature13560 |
[15] | Guillemette, F., Bianchi, T.S. and Spencer, R.G.M. (2017) Old before Your Time: Ancient Carbon Incorporation in Contemporary Aquatic Foodwebs. Limnology and Oceanography, 62, 1682-1700. https://doi.org/10.1002/lno.10525 |
[16] | McClelland, J.W., Holmes, R.M., Dunton, K.H. and Macdonald, R.W. (2011) The Arctic Ocean Estuary. Estuaries and Coasts, 35, 353-368. https://doi.org/10.1007/s12237-010-9357-3 |
[17] | Vonk, J.E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., et al. (2010) Molecular and Radiocarbon Constraints on Sources and Degradation of Terrestrial Organic Carbon along the Kolyma Paleoriver Transect, East Siberian Sea. Biogeosciences, 7, 3153-3166. https://doi.org/10.5194/bg-7-3153-2010 |
[18] | Zsolnay, Á. (2003) Dissolved Organic Matter: Artefacts, Definitions, and Functions. Geoderma, 113, 187-209. https://doi.org/10.1016/s0016-7061(02)00361-0 |
[19] | Kaiser, K. and Kalbitz, K. (2012) Cycling Downwards—Dissolved Organic Matter in Soils. Soil Biology and Biochemistry, 52, 29-32. https://doi.org/10.1016/j.soilbio.2012.04.002 |
[20] | Panneer Selvam, B., Lapierre, J., Guillemette, F., Voigt, C., Lamprecht, R.E., Biasi, C., et al. (2017) Degradation Potentials of Dissolved Organic Carbon (DOC) from Thawed Permafrost Peat. Scientific Reports, 7, Article No. 45811. https://doi.org/10.1038/srep45811 |
[21] | Spencer, R.G.M., Mann, P.J., Dittmar, T., Eglinton, T.I., McIntyre, C., Holmes, R.M., et al. (2015) Detecting the Signature of Permafrost Thaw in Arctic Rivers. Geophysical Research Letters, 42, 2830-2835. https://doi.org/10.1002/2015gl063498 |
[22] | Tank, S.E., Striegl, R.G., McClelland, J.W. and Kokelj, S.V. (2016) Multi-Decadal Increases in Dissolved Organic Carbon and Alkalinity Flux from the Mackenzie Drainage Basin to the Arctic Ocean. Environmental Research Letters, 11, Article 054015. https://doi.org/10.1088/1748-9326/11/5/054015 |
[23] | Olefeldt, D., Persson, A. and Turetsky, M.R. (2014) Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9, Article 035005. https://doi.org/10.1088/1748-9326/9/3/035005 |
[24] | Öquist, M.G., Bishop, K., Grelle, A., Klemedtsson, L., Köhler, S.J., Laudon, H., et al. (2014) The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. Environmental Science & Technology Letters, 1, 315-319. https://doi.org/10.1021/ez500169j |
[25] | Abbott, B.W., Baranov, V., Mendoza-Lera, C., Nikolakopoulou, M., Harjung, A., Kolbe, T., et al. (2016) Using Multi-Tracer Inference to Move Beyond Single-Catchment Ecohydrology. Earth-Science Reviews, 160, 19-42. https://doi.org/10.1016/j.earscirev.2016.06.014 |
[26] | Abbott, B.W., Jones, J.B., Schuur, E.A.G., et al. (2016) Biomass Offsets Little or None of Permafrost Carbon Release from Soils, Streams, and Wildfire: An Expert Assessment. Environmental Research Letters, 11, Article 034014. |
[27] | O'Donnell, J.A., Aiken, G.R., Swanson, D.K., Panda, S., Butler, K.D. and Baltensperger, A.P. (2016) Dissolved Organic Matter Composition of Arctic Rivers: Linking Permafrost and Parent Material to Riverine Carbon. Global Biogeochemical Cycles, 30, 1811-1826. https://doi.org/10.1002/2016gb005482 |
[28] | Striegl, R.G., Aiken, G.R., Dornblaser, M.M., Raymond, P.A. and Wickland, K.P. (2005) A Decrease in Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32, L21413. https://doi.org/10.1029/2005gl024413 |
[29] | Kicklighter, D.W., Hayes, D.J., McClelland, J.W., Peterson, B.J., McGuire, A.D. and Melillo, J.M. (2013) Insights and Issues with Simulating Terrestrial DOC Loading of Arctic River Networks. Ecological Applications, 23, 1817-1836. https://doi.org/10.1890/11-1050.1 |
[30] | Tetzlaff, D., Buttle, J., Carey, S.K., McGuire, K., Laudon, H. and Soulsby, C. (2014) Tracer-Based Assessment of Flow Paths, Storage and Runoff Generation in Northern Catchments: A Review. Hydrological Processes, 29, 3475-3490. https://doi.org/10.1002/hyp.10412 |
[31] | Jones, J.B. and Rinehart, A.J. (2010) The Long-Term Response of Stream Flow to Climatic Warming in Headwater Streams of Interior Alaskathis Article Is One of a Selection of Papers from the Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research, 40, 1210-1218. https://doi.org/10.1139/x10-047 |
[32] | Rogger, M., Chirico, G.B., Hausmann, H., Krainer, K., Brückl, E., Stadler, P., et al. (2017) Impact of Mountain Permafrost on Flow Path and Runoff Response in a High Alpine Catchment. Water Resources Research, 53, 1288-1308. https://doi.org/10.1002/2016wr019341 |
[33] | Wang, G., Hu, H. and Li, T. (2009) The Influence of Freeze-Thaw Cycles of Active Soil Layer on Surface Runoff in a Permafrost Watershed. Journal of Hydrology, 375, 438-449. https://doi.org/10.1016/j.jhydrol.2009.06.046 |
[34] | Karlsson, J.M., Lyon, S.W. and Destouni, G. (2012) Thermokarst Lake, Hydrological Flow and Water Balance Indicators of Permafrost Change in Western Siberia. Journal of Hydrology, 464, 459-466. https://doi.org/10.1016/j.jhydrol.2012.07.037 |
[35] | Herzsprung, P., Osterloh, K., von Tümpling, W., Harir, M., Hertkorn, N., Schmitt-Kopplin, P., et al. (2017) Differences in DOM of Rewetted and Natural Peatlands—Results from High-Field FT-ICR-MS and Bulk Optical Parameters. Science of the Total Environment, 586, 770-781. https://doi.org/10.1016/j.scitotenv.2017.02.054 |
[36] | Repeta, D.J., Quan, T.M., Aluwihare, L.I. and Accardi, A. (2002) Chemical Characterization of High Molecular Weight Dissolved Organic Matter in Fresh and Marine Waters. Geochimica et Cosmochimica Acta, 66, 955-962. https://doi.org/10.1016/s0016-7037(01)00830-4 |
[37] | Strack, M., Waddington, J.M., Bourbonniere, R.A., Buckton, E.L., Shaw, K., Whittington, P., et al. (2008) Effect of Water Table Drawdown on Peatland Dissolved Organic Carbon Export and Dynamics. Hydrological Processes, 22, 3373-3385. https://doi.org/10.1002/hyp.6931 |
[38] | Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B. and Fenner, N. (2001) Export of Organic Carbon from Peat Soils. Nature, 412, 785-785. https://doi.org/10.1038/35090628 |
[39] | Clark, J.M., Ashley, D., Wagner, M., Chapman, P.J., Lane, S.N., Evans, C.D., et al. (2009) Increased Temperature Sensitivity of Net DOC Production from Ombrotrophic Peat Due to Water Table Draw-Down. Global Change Biology, 15, 794-807. https://doi.org/10.1111/j.1365-2486.2008.01683.x |
[40] | Peng, R., Liu, H., Anenkhonov, O.A., Sandanov, D.V., Korolyuk, A.Y., Shi, L., et al. (2022) Tree Growth Is Connected with Distribution and Warming-Induced Degradation of Permafrost in Southern Siberia. Global Change Biology, 28, 5243-5253. https://doi.org/10.1111/gcb.16284 |
[41] | Chen, H.Y. and Popadiouk, R.V. (2002) Dynamics of North American Boreal Mixedwoods. Environmental Reviews, 10, 137-166. https://doi.org/10.1139/a02-007 |
[42] | Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., et al. (2006) The Impact of Boreal Forest Fire on Climate Warming. Science, 314, 1130-1132. https://doi.org/10.1126/science.1132075 |
[43] | Wu, Z., He, H.S., Yang, J., Liu, Z. and Liang, Y. (2014) Relative Effects of Climatic and Local Factors on Fire Occurrence in Boreal Forest Landscapes of Northeastern China. Science of the Total Environment, 493, 472-480. https://doi.org/10.1016/j.scitotenv.2014.06.011 |
[44] | Cahoon, S.M.P., Sullivan, P.F., Brownlee, A.H., Pattison, R.R., Andersen, H., Legner, K., et al. (2018) Contrasting Drivers and Trends of Coniferous and Deciduous Tree Growth in Interior Alaska. Ecology, 99, 1284-1295. https://doi.org/10.1002/ecy.2223 |
[45] | Gibson, C.M., Chasmer, L.E., Thompson, D.K., Quinton, W.L., Flannigan, M.D. and Olefeldt, D. (2018) Wildfire as a Major Driver of Recent Permafrost Thaw in Boreal Peatlands. Nature Communications, 9, Article No. 3041. https://doi.org/10.1038/s41467-018-05457-1 |
[46] | Ma, Q., Jin, H., Yu, C. and Bense, V.F. (2019) Dissolved Organic Carbon in Permafrost Regions: A Review. Science China Earth Sciences, 62, 349-364. https://doi.org/10.1007/s11430-018-9309-6 |
[47] | Likens, G.E. (2013) Biogeochemistry of a Forested Ecosystem. Springer Science & Business Media. |
[48] | Prokushkin, A.S., Prokushkin, S.G., Shibata, H., et al. (2001) Dissolved Organic Carbon in Coniferous Forests of Central Siberia. Eurasian Journal of Forest Research, 2, 45-58. |
[49] | Osawa, A., Zyryanova, O.A., Matsuura, Y., et al. (2010) Permafrost Ecosystems. Ecological Studies, 2010, Article 209. |
[50] | Margesin, R. (2008) Permafrost Soils. Springer Science & Business Media. |
[51] | Michaelson, G.J., Ping, C.L., Kling, G.W. and Hobbie, J.E. (1998) The Character and Bioactivity of Dissolved Organic Matter at Thaw and in the Spring Runoff Waters of the Arctic Tundra North Slope, Alaska. Journal of Geophysical Research: Atmospheres, 103, 28939-28946. https://doi.org/10.1029/98jd02650 |
[52] | Ewing, S.A., O’Donnell, J.A., Aiken, G.R., Butler, K., Butman, D., Windham-Myers, L., et al. (2015) Long-Term Anoxia and Release of Ancient, Labile Carbon upon Thaw of Pleistocene Permafrost. Geophysical Research Letters, 42, 10730-10738. https://doi.org/10.1002/2015gl066296 |
[53] | Vonk, J.E., Mann, P.J., Davydov, S., Davydova, A., Spencer, R.G.M., Schade, J., et al. (2013) High Biolability of Ancient Permafrost Carbon upon Thaw. Geophysical Research Letters, 40, 2689-2693. https://doi.org/10.1002/grl.50348 |
[54] | Vonk, J.E., Mann, P.J., Dowdy, K.L., Davydova, A., Davydov, S.P., Zimov, N., et al. (2013) Dissolved Organic Carbon Loss from Yedoma Permafrost Amplified by Ice Wedge Thaw. Environmental Research Letters, 8, Article 035023. https://doi.org/10.1088/1748-9326/8/3/035023 |
[55] | Abbott, B.W., Larouche, J.R., Jones, J.B., Bowden, W.B. and Balser, A.W. (2014) Elevated Dissolved Organic Carbon Biodegradability from Thawing and Collapsing Permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2049-2063. https://doi.org/10.1002/2014jg002678 |
[56] | Mann, P.J., Eglinton, T.I., McIntyre, C.P., Zimov, N., Davydova, A., Vonk, J.E., et al. (2015) Utilization of Ancient Permafrost Carbon in Headwaters of Arctic Fluvial Networks. Nature Communications, 6, Article No. 7856. https://doi.org/10.1038/ncomms8856 |
[57] | Larouche, J.R., Abbott, B.W., Bowden, W.B. and Jones, J.B. (2015) The Role of Watershed Characteristics, Permafrost Thaw, and Wildfire on Dissolved Organic Carbon Biodegradability and Water Chemistry in Arctic Headwater Streams. Biogeosciences, 12, 4221-4233. https://doi.org/10.5194/bg-12-4221-2015 |
[58] | Zhou, W., Ma, T., Yin, X., Wu, X., Li, Q., Rupakheti, D., et al. (2023) Dramatic Carbon Loss in a Permafrost Thaw Slump in the Tibetan Plateau Is Dominated by the Loss of Microbial Necromass Carbon. Environmental Science & Technology, 57, 6910-6921. https://doi.org/10.1021/acs.est.2c07274 |
[59] | Michalzik, B., Tipping, E., Mulder, J., Lancho, J.F.G., Matzner, E., Bryant, C.L., et al. (2003) Modelling the Production and Transport of Dissolved Organic Carbon in Forest Soils. Biogeochemistry, 66, 241-264. https://doi.org/10.1023/b:biog.0000005329.68861.27 |
[60] | Hope, D., Billett, M.F. and Cresser, M.S. (1994) A Review of the Export of Carbon in River Water: Fluxes and Processes. Environmental Pollution, 84, 301-324. https://doi.org/10.1016/0269-7491(94)90142-2 |
[61] | Moore, T.R. (2003) Dissolved Organic Carbon in a Northern Boreal Landscape. Global Biogeochemical Cycles, 17, Article 1109. https://doi.org/10.1029/2003gb002050 |
[62] | Thurman, E.M. (2012) Organic Geochemistry of Natural Waters. Springer Science & Business Media. |
[63] | Guggenberger, G. and Zech, W. (1994) Dissolved Organic Carbon in Forest Floor Leachates: Simple Degradation Products or Humic Substances? Science of the Total Environment, 152, 37-47. https://doi.org/10.1016/0048-9697(94)90549-5 |
[64] | Aiken, G.R., McKnight, D.M., Thorn, K.A. and Thurman, E.M. (1992) Isolation of Hydrophilic Organic Acids from Water Using Nonionic Macroporous Resins. Organic Geochemistry, 18, 567-573. https://doi.org/10.1016/0146-6380(92)90119-i |
[65] | Amon, R.M.W., Rinehart, A.J., Duan, S., Louchouarn, P., Prokushkin, A., Guggenberger, G., et al. (2012) Dissolved Organic Matter Sources in Large Arctic Rivers. Geochimica et Cosmochimica Acta, 94, 217-237. https://doi.org/10.1016/j.gca.2012.07.015 |
[66] | Neff, J.C. and Asner, G.P. (2001) Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems, 4, 29-48. https://doi.org/10.1007/s100210000058 |
[67] | Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T. and Striegl, R.G. (2018) Dissolved Organic Carbon and Nitrogen Release from Boreal Holocene Permafrost and Seasonally Frozen Soils of Alaska. Environmental Research Letters, 13, Article 065011. https://doi.org/10.1088/1748-9326/aac4ad |
[68] | Pengerud, A., Dignac, M., Certini, G., Strand, L.T., Forte, C. and Rasse, D.P. (2017) Soil Organic Matter Molecular Composition and State of Decomposition in Three Locations of the European Arctic. Biogeochemistry, 135, 277-292. https://doi.org/10.1007/s10533-017-0373-2 |
[69] | Koven, C.D., Lawrence, D.M. and Riley, W.J. (2015) Permafrost Carbon-Climate Feedback Is Sensitive to Deep Soil Carbon Decomposability but Not Deep Soil Nitrogen Dynamics. Proceedings of the National Academy of Sciences, 112, 3752-3757. https://doi.org/10.1073/pnas.1415123112 |
[70] | Wickland, K.P., Neff, J.C. and Aiken, G.R. (2007) Dissolved Organic Carbon in Alaskan Boreal Forest: Sources, Chemical Characteristics, and Biodegradability. Ecosystems, 10, 1323-1340. https://doi.org/10.1007/s10021-007-9101-4 |
[71] | Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R. and Mopper, K. (2003) Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37, 4702-4708. https://doi.org/10.1021/es030360x |
[72] | Wallage, Z.E., Holden, J. and McDonald, A.T. (2006) Drain Blocking: An Effective Treatment for Reducing Dissolved Organic Carbon Loss and Water Discolouration in a Drained Peatland. Science of the Total Environment, 367, 811-821. https://doi.org/10.1016/j.scitotenv.2006.02.010 |
[73] | Fong, S.S. and Mohamed, M. (2007) Chemical Characterization of Humic Substances Occurring in the Peats of Sarawak, Malaysia. Organic Geochemistry, 38, 967-976. https://doi.org/10.1016/j.orggeochem.2006.12.010 |
[74] | Fenner, N. and Freeman, C. (2011) Drought-Induced Carbon Loss in Peatlands. Nature Geoscience, 4, 895-900. https://doi.org/10.1038/ngeo1323 |
[75] | Strack, M., Munir, T.M. and Khadka, B. (2019) Shrub Abundance Contributes to Shifts in Dissolved Organic Carbon Concentration and Chemistry in a Continental Bog Exposed to Drainage and Warming. Ecohydrology, 12, e2100. https://doi.org/10.1002/eco.2100 |
[76] | Strack, M., Zuback, Y., McCarter, C. and Price, J. (2015) Changes in Dissolved Organic Carbon Quality in Soils and Discharge 10 Years after Peatland Restoration. Journal of Hydrology, 527, 345-354. https://doi.org/10.1016/j.jhydrol.2015.04.061 |
[77] | Lu, K., Gardner, W.S. and Liu, Z. (2018) Molecular Structure Characterization of Riverine and Coastal Dissolved Organic Matter with Ion Mobility Quadrupole Time-Of-Flight LCMS (IM Q-TOF Lcms). Environmental Science & Technology, 52, 7182-7191. https://doi.org/10.1021/acs.est.8b00999 |
[78] | Hodgkins, S.B., Tfaily, M.M., Podgorski, D.C., McCalley, C.K., Saleska, S.R., Crill, P.M., et al. (2016) Elemental Composition and Optical Properties Reveal Changes in Dissolved Organic Matter along a Permafrost Thaw Chronosequence in a Subarctic Peatland. Geochimica et Cosmochimica Acta, 187, 123-140. https://doi.org/10.1016/j.gca.2016.05.015 |
[79] | Gandois, L., Hoyt, A.M., Hatté, C., Jeanneau, L., Teisserenc, R., Liotaud, M., et al. (2019) Contribution of Peatland Permafrost to Dissolved Organic Matter along a Thaw Gradient in North Siberia. Environmental Science & Technology, 53, 14165-14174. https://doi.org/10.1021/acs.est.9b03735 |
[80] | Prokushkin, A.S., Gleixner, G., McDowell, W.H., Ruehlow, S. and Schulze, E. (2007) Source and Substrate-Specific Export of Dissolved Organic Matter from Permafrost-Dominated Forested Watershed in Central Siberia. Global Biogeochemical Cycles, 21, GB4003. https://doi.org/10.1029/2007gb002938 |
[81] | Normand, A.E., Smith, A.N., Clark, M.W., Long, J.R. and Reddy, K.R. (2017) Chemical Composition of Soil Organic Matter in a Subarctic Peatland: Influence of Shifting Vegetation Communities. Soil Science Society of America Journal, 81, 41-49. https://doi.org/10.2136/sssaj2016.05.0148 |
[82] | He, M., Li, Q., Chen, L., Qin, S., Kuzyakov, Y., Liu, Y., et al. (2023) Priming Effect Stimulates Carbon Release from Thawed Permafrost. Global Change Biology, 29, 4638-4651. https://doi.org/10.1111/gcb.16750 |