|
炔醇化合物的部分相关反应研究
|
Abstract:
炔醇化合物是一类含有羟基和碳碳三键的有机化合物,羟基和碳碳三键均可参与多种转化,如Meyer-Schuster重排反应、亲核取代反应、环化反应等,可以引入不同的官能团,适应多样性导向合成。由于其独特的结构,可以用来构建复杂分子骨架或功能化产物,因此炔醇在有机合成、药物化学、材料科学等领域具有广泛的应用。
Alkyne alcohol compounds are a class of organic compounds containing hydroxyl and carbon-carbon triple bonds, both hydroxyl and carbon-carbon triple bonds can participate in a variety of transformations, such as Meyer-Schuster rearrangement reactions, nucleophilic substitution reactions, cyclization reactions, etc., and different functional groups can be introduced to adapt to diversity-oriented synthesis. Due to its unique structure, it can be used to construct complex molecular skeletons or functionalized products, so alkyne alcohols have a wide range of applications in organic synthesis, medicinal chemistry, materials science and other fields.
[1] | Hosseyni, S., Wojtas, L., Li, M. and Shi, X. (2016) Intermolecular Homopropargyl Alcohol Addition to Alkyne and a Sequential 1,6-Enyne Cycloisomerization with Triazole-Gold Catalyst. Journal of the American Chemical Society, 138, 3994-3997. https://doi.org/10.1021/jacs.6b00882 |
[2] | Li, Z., Jiang, S., He, S., Gao, Y., Bian, M., Chen, H., et al. (2024) Synthesis of 2-Acyl Benzofurans and Indoles Based on Nucleophile-Intercepted Meyer-Schuster Rearrangement of o-Hydroxyphenyl and o-Aminophenyl Propargylic Alcohols. Organic Chemistry Frontiers, 11, 809-815. https://doi.org/10.1039/d3qo01671d |
[3] | Kumar, G.R., Rajesh, M., Lin, S. and Liu, S. (2020) Propargylic Alcohols as Coupling Partners in Transition‐Metal‐catalyzed Arene C-H Activation. Advanced Synthesis & Catalysis, 362, 5238-5256. https://doi.org/10.1002/adsc.202000896 |
[4] | Georgy, M., Boucard, V. and Campagne, J. (2005) Gold(III)-Catalyzed Nucleophilic Substitution of Propargylic Alcohols. Journal of the American Chemical Society, 127, 14180-14181. https://doi.org/10.1021/ja0534147 |
[5] | Zhan, Z., Yang, W., Yang, R., Yu, J., Li, J. and Liu, H. (2006) BiCl3-Catalyzed Propargylic Substitution Reaction of Propargylic Alcohols with C-, O-, S-and N-Centered Nucleophiles. Chemical Communications, No. 31, 3352-3354. https://doi.org/10.1039/b606470a |
[6] | Yadav, J.S., Reddy, B.V.S., Thrimurtulu, N., Reddy, N.M. and Prasad, A.R. (2008) The First Example of Alkynylation of Propargylic Alcohols with Alkynylsilanes Catalyzed by Molecular Iodine. Tetrahedron Letters, 49, 2031-2033. https://doi.org/10.1016/j.tetlet.2008.01.017 |
[7] | Rao, W., Zhang, X., Sze, E.M.L. and Chan, P.W.H. (2009) Ytterbium(III) Triflate-Catalyzed Amination of 1-Cyclopropylprop-2-Yn-1-Ols as an Expedient Route to Conjugated Enynes. The Journal of Organic Chemistry, 74, 1740-1743. https://doi.org/10.1021/jo8024626 |
[8] | Zhang, M., Yang, J., Xu, Q., Dong, C., Han, L. and Shen, R. (2018) Copper‐Catalyzed Dehydrative Cyclization of 1‐(2‐hydroxyphenyl)Propargyl Alcohols with P(O)H Compounds for the Synthesis of 2‐Phosphorylmethylbenzofurans. Advanced Synthesis & Catalysis, 360, 334-345. https://doi.org/10.1002/adsc.201701368 |
[9] | Liu, C., Li, H., Wang, B., Guo, Z., Wang, Y., Zhang, J., et al. (2022) Temperature Controlled Di-and Monosulfonylation of Propargyl Alcohols with Sodium Sulfinates: Switchable Access to (E)-Allyl, Vinyldisulfones and Propargyl Sulfones. Organic Chemistry Frontiers, 9, 1855-1860. https://doi.org/10.1039/d1qo01906f |
[10] | Egi, M., Yamaguchi, Y., Fujiwara, N. and Akai, S. (2008) Mo-Au Combo Catalysis for Rapid 1, 3-Rearrangement of Propargyl Alcohols into α, β-Unsaturated Carbonyl Compounds. Organic Letters, 10, 1867-1870. https://doi.org/10.1021/ol800596c |
[11] | Collins, B.S.L., Suero, M.G. and Gaunt, M.J. (2013) Copper‐Catalyzed Arylative Meyer-Schuster Rearrangement of Propargylic Alcohols to Complex Enones Using Diaryliodonium Salts. Angewandte Chemie International Edition, 52, 5799-5802. https://doi.org/10.1002/anie.201301529 |
[12] | Um, J., Yun, H. and Shin, S. (2016) Cross-Coupling of Meyer-Schuster Intermediates under Dual Gold-Photoredox Catalysis. Organic Letters, 18, 484-487. https://doi.org/10.1021/acs.orglett.5b03531 |
[13] | Banerjee, S., Ambegave, S.B., Mule, R.D., Senthilkumar, B. and Patil, N.T. (2020) Gold-Catalyzed Alkynylative Meyer-Schuster Rearrangement. Organic Letters, 22, 4792-4796. https://doi.org/10.1021/acs.orglett.0c01596 |
[14] | Zhao, W. and Carreira, E.M. (2003) Facile One-Pot Synthesis of Photochromic Pyrans. Organic Letters, 5, 4153-4154. https://doi.org/10.1021/ol035599x |
[15] | Huang, W., Shen, Q., Wang, J. and Zhou, X. (2008) One-Step Synthesis of Substituted Dihydro-and Tetrahydroisoquinolines by FeCl3∙6H2O Catalyzed Intramolecular Friedel-Crafts Reaction of Benzylamino-Substituted Propargylic Alcohols. The Journal of Organic Chemistry, 73, 1586-1589. https://doi.org/10.1021/jo702342r |
[16] | Zhu, Y., Wen, S., Yin, G., Hong, D., Lu, P. and Wang, Y. (2011) Tandem Reaction of Propargyl Alcohol and n-Sulfonylhydrazone: Synthesis of Dihydropyrazole and Its Utility in the Preparation of 3, 3-Diarylacrylonitrile. Organic Letters, 13, 3553-3555. https://doi.org/10.1021/ol201203g |
[17] | Yuan, G., He, Z., Zheng, J., Chen, Z., Huang, H., Shi, D., et al. (2011) Carbon Dioxide-Mediated Synthesis of 3(2h)-Furanones from Diyne Alcohols. Tetrahedron Letters, 52, 5956-5959. https://doi.org/10.1016/j.tetlet.2011.08.130 |
[18] | Gabriele, B., Mancuso, R., Maltese, V., Veltri, L. and Salerno, G. (2012) Synthesis of Furan-3-Carboxylic and 4-Methylene-4, 5-Dihydrofuran-3-Carboxylic Esters by Direct Palladium Iodide Catalyzed Oxidative Carbonylation of 3-Yne-1, 2-Diol Derivatives. The Journal of Organic Chemistry, 77, 8657-8668. https://doi.org/10.1021/jo301628n |
[19] | Haven, T., Kubik, G., Haubenreisser, S. and Niggemann, M. (2013) Calcium‐Catalyzed Cyclopropanation. Angewandte Chemie International Edition, 52, 4016-4019. https://doi.org/10.1002/anie.201209053 |
[20] | Wang, T., Shi, S., Rudolph, M. and Hashmi, A.S.K. (2014) Synthesis of Fully Substituted 3‐Formyl‐4‐Iodofurans via a Gold(i)‐Catalyzed Oxidation/1, 2‐Alkynyl Migration/Cyclization/Iodination Cascade. Advanced Synthesis & Catalysis, 356, 2337-2342. https://doi.org/10.1002/adsc.201400356 |
[21] | Tharra, P. and Baire, B. (2015) Mild Approach to 2-Acylfurans via Intercepted Meyer-Schuster Rearrangement of 6-Hydroxyhex-2-en-4-Ynals. The Journal of Organic Chemistry, 80, 8314-8328. https://doi.org/10.1021/acs.joc.5b01420 |
[22] | Qiu, Y., Song, X., Li, M., Zhu, X., Wang, A., Yang, F., et al. (2016) BF3∙OEt2-AgSCF3 Mediated Trifluoromethylthiolation/Cascade Cyclization of Propynols: Synthesis of 4-((Trifluoromethyl)thio)-2H-Chromene and 4-((Trifluoromethyl)thio)-1, 2-Dihydroquinoline Derivatives. Organic Letters, 18, 1514-1517. https://doi.org/10.1021/acs.orglett.6b00065 |
[23] | Sun, L., Liu, P., Wang, J., Lu, P. and Wang, Y. (2017) Preparation of Spiro[Indene-1, 1’-Isoindolin]-3’-Ones via Sulfuric Acid-Promoted Cascade Cyclization. The Journal of Organic Chemistry, 82, 8407-8418. https://doi.org/10.1021/acs.joc.7b00958 |
[24] | Kaufmann, J., Jäckel, E. and Haak, E. (2018) Ruthenium‐Catalyzed Cascade Annulation of Indole with Propargyl Alcohols. Angewandte Chemie International Edition, 57, 5908-5911. https://doi.org/10.1002/anie.201801846 |
[25] | Yan, B., Fu, Y., Zhu, H. and Chen, Z. (2019) Synthesis of Divergent Benzo[b]fluorenones through Cycloaromatization Reactions of 1,5-Enynols and 1,5-Diynols. The Journal of Organic Chemistry, 84, 4246-4262. https://doi.org/10.1021/acs.joc.9b00231 |
[26] | Zheng, J., Wu, D., Lin, N., Liu, Y., Wang, L., Zhu, X., et al. (2021) Kharasch-Type Photocyclization of 1, 7-Diynes for the Stereospecific Synthesis of Tetrahydronaphthalen-1-Ols. Tetrahedron Letters, 85, Article ID: 153485. https://doi.org/10.1016/j.tetlet.2021.153485 |
[27] | Goulart, T.A.C., Recchi, A.M.S., Back, D.F. and Zeni, G. (2022) Selective 5‐Exo-Dig versus 6‐Endo‐Dig Cyclization of Benzoimidazole Thiols with Propargyl Alcohols. Advanced Synthesis & Catalysis, 364, 1989-1997. https://doi.org/10.1002/adsc.202200254 |